无论任何时候,只要有两个goroutine并发访问同一变量,且至少其中的一个是写操作的时候就会发生数据竞争。
一个只能为1和0的信号量叫做二元信号量(binary semaphore)。
sync包里的Mutex类型支持。Lock方法能够获取到token(这里叫锁),并且Unlock方法会释放token。
import "sync"
var (
mu sync.Mutex // guards balance
balance int
)
func Deposit(amount int) {
mu.Lock()
balance = balance + amount
mu.Unlock()
}
func Balance() int {
mu.Lock()
b := balance
mu.Unlock()
return b
}
可以用defer来调用Unlock,临界区会隐式地延伸到函数作用域的最后。
func Balance() int {
mu.Lock()
defer mu.Unlock()
return balance
}
defer在临界区发生panic时也依然会执行。
允许多个只读操作并行执行,但写操作会完全互斥。这种锁叫作“多读单写”锁(multiple readers, single writer lock),Go语言提供的这样的锁是sync.RWMutex。
var mu sync.RWMutex
var balance int
func Balance() int {
mu.RLock() // readers lock
defer mu.RUnlock()
return balance
}
调用RLock和RUnlock方法来获取和释放一个读锁(共享锁)。
调用mu.Lock和mu.Unlock方法来获取和释放一个写锁(互斥锁)。
RWMutex只有当获得锁的大部分goroutine都是读操作,RWMutex才是最能带来好处的。
RWMutex需要更复杂的内部记录,所以会让它比一般的无竞争锁的mutex慢一些。
“同步”不仅仅是一堆goroutine执行顺序的问题,同样也会涉及到内存的问题。
在现代计算机中可能会有一堆处理器,每一个都会有其本地缓存(local cache)。为了效率,对内存的写入一般会在每一个处理器中缓冲,并在必要时一起flush到主存。这种情况下这些数据可能会以与当初goroutine写入顺序不同的顺序被提交到主存。像channel通信或者互斥量操作这样的原语会使处理器将其聚集的写入flush并commit,这样goroutine在某个时间点上的执行结果才能被其它处理器上运行的goroutine得到。
所有并发的问题都可以用一致的、简单的既定的模式来规避。所以可能的话,将变量限定在goroutine内部;如果是多个goroutine都需要访问的变量,使用互斥条件来访问。
如果初始化成本比较大的话,那么将初始化延迟到需要的时候再去做就是一个比较好的选择。
sync包为提供了一个专门的方案来解决这种一次性初始化的问题:sync.Once。
概念上来讲,一次性的初始化需要一个互斥量mutex和一个boolean变量来记录初始化是不是已经完成了;互斥量用来保护boolean变量和客户端数据结构。Do这个唯一的方法需要接收初始化函数作为其参数。
var loadIconsOnce sync.Once
var icons map[string]image.Image
// Concurrency-safe.
func Icon(name string) image.Image {
loadIconsOnce.Do(loadIcons)
return icons[name]
}
Go的runtime和工具链装备了一个复杂但好用的动态分析工具,竞争检查器(the race detector)。
只要在go build,go run或者go test命令后面加上-race的flag,就会使编译器创建一个应用的“修改”版或者一个附带了能够记录所有运行期对共享变量访问工具的test,并且会记录下每一个读或者写共享变量的goroutine的身份信息。修改版的程序会记录下所有的同步事件,比如go语句,channel操作,以及对(*sync.Mutex).Lock
, (*sync.WaitGroup).Wait
等等的调用。
每一个OS线程都有一个固定大小的内存块(一般会是2MB)来做栈,这个栈会用来存储当前正在被调用或挂起(指在调用其它函数时)的函数的内部变量。
一个goroutine会以一个很小的栈开始其生命周期,一般只需要2KB。一个goroutine的栈,和操作系统线程一样,会保存其活跃或挂起的函数调用的本地变量,但是和OS线程不太一样的是,一个goroutine的栈大小并不是固定的;栈的大小会根据需要动态地伸缩。而goroutine的栈的最大值有1GB,比传统的固定大小的线程栈要大得多,尽管一般情况下,大多goroutine都不需要这么大的栈。
OS线程会被操作系统内核调度。每几毫秒,一个硬件计时器会中断处理器,这会调用一个叫作scheduler的内核函数。这个函数会挂起当前执行的线程并将它的寄存器内容保存到内存中,检查线程列表并决定下一次哪个线程可以被运行,并从内存中恢复该线程的寄存器信息,然后恢复执行该线程的现场并开始执行线程。因为操作系统线程是被内核所调度,所以从一个线程向另一个“移动”需要完整的上下文切换,也就是说,保存一个用户线程的状态到内存,恢复另一个线程的到寄存器,然后更新调度器的数据结构。这几步操作很慢,因为其局部性很差需要几次内存访问,并且会增加运行的cpu周期。
Go的运行时包含了其自己的调度器,这个调度器使用了一些技术手段,比如m:n调度,因为其会在n个操作系统线程上多工(调度)m个goroutine。Go调度器的工作和内核的调度是相似的,但是这个调度器只关注单独的Go程序中的goroutine。
和操作系统的线程调度不同的是,Go调度器并不是用一个硬件定时器,而是被Go语言“建筑”本身进行调度的。例如当一个goroutine调用了time.Sleep,或者被channel调用或者mutex操作阻塞时,调度器会使其进入休眠并开始执行另一个goroutine,直到时机到了再去唤醒第一个goroutine。因为这种调度方式不需要进入内核的上下文,所以重新调度一个goroutine比调度一个线程代价要低得多。
Go的调度器使用了一个叫做GOMAXPROCS的变量来决定会有多少个操作系统的线程同时执行Go的代码。其默认的值是运行机器上的CPU的核心数,所以在一个有8个核心的机器上时,调度器一次会在8个OS线程上去调度GO代码。
在休眠中的或者在通信中被阻塞的goroutine是不需要一个对应的线程来做调度的。在I/O中或系统调用中或调用非Go语言函数时,是需要一个对应的操作系统线程的,但是GOMAXPROCS并不需要将这几种情况计算在内。
在大多数支持多线程的操作系统和程序语言中,当前的线程都有一个独特的身份(id),并且这个身份信息可以以一个普通值的形式被很容易地获取到,典型的可以是一个integer或者指针值。这种情况下我们做一个抽象化的thread-local storage(线程本地存储,多线程编程中不希望其它线程访问的内容)就很容易,只需要以线程的id作为key的一个map就可以解决问题,每一个线程以其id就能从中获取到值,且和其它线程互不冲突。
goroutine没有可以被程序员获取到的身份(id)的概念。