diff --git a/DataflowRewriter/Module.lean b/DataflowRewriter/Module.lean index 4b2ef5d..3ec9a85 100644 --- a/DataflowRewriter/Module.lean +++ b/DataflowRewriter/Module.lean @@ -693,7 +693,7 @@ theorem refines_φ_product {J K} [Nonempty J] [Nonempty I] {imod₂ : Module Ide [MatchInterface imod₂ smod₂] {φ₁ φ₂} : imod ⊑_{φ₁} smod → imod₂ ⊑_{φ₂} smod₂ → - imod.product imod₂ ⊑_{λ a b => φ₁ a.1 b.1 ∧ φ₂ a.2 b.2} smod.product smod₂ := by stop + imod.product imod₂ ⊑_{λ a b => φ₁ a.1 b.1 ∧ φ₂ a.2 b.2} smod.product smod₂ := by intro href₁ href₂ have mm_prod : MatchInterface (imod.product imod₂) (smod.product smod₂) := by apply MatchInterface_product unfold refines_φ at * @@ -779,13 +779,15 @@ theorem refines_φ_product {J K} [Nonempty J] [Nonempty I] {imod₂ : Module Ide cases h : AssocList.find? ident imod.inputs; rw [h] at hruleIn'none rw [h] at this; simp [-AssocList.find?_eq] at this; assumption rw [h] at this; rw [h] at hruleIn'none; injection hruleIn'none + have hrule_another : (AssocList.mapVal (fun x => @liftL S K) smod.inputs).find? ident = none := by + rw [←AssocList.find?_map_comm]; simp only [*]; rfl have : (AssocList.mapVal (fun x => liftR) smod₂.inputs).find? ident = some (@liftR S _ Srule) := by rw [←AssocList.find?_map_comm]; rw [HSrule]; rfl have s : (smod.product smod₂).inputs.getIO ident = liftR (smod₂.inputs.getIO ident) := by skip; dsimp [Module.product, PortMap.getIO]; rw [AssocList.append_find_right, this] · rw [HSrule]; rfl - · rw [hruleIn'none] + · rw [hrule_another] rw [rw_rule_execution s] dsimp [liftL]; refine ⟨?_, rfl⟩; convert hrule₃; simp · solve_by_elim [existSR_append_right, existSR_liftR'] @@ -834,6 +836,7 @@ theorem refines_φ_product {J K} [Nonempty J] [Nonempty I] {imod₂ : Module Ide · assumption · apply hφ.right case inr => + rcases hruleIn' with ⟨hruleIn'none, hruleIn'⟩ rw [AssocList.find?_mapVal] at hruleIn' cases h : AssocList.find? ident imod₂.outputs; rw [h] at hruleIn'; injection hruleIn' rename_i rule'; rw [h] at hruleIn'; simp at hruleIn'; subst_vars @@ -862,14 +865,21 @@ theorem refines_φ_product {J K} [Nonempty J] [Nonempty I] {imod₂ : Module Ide simp [-AssocList.find?_eq] at this exact Option.isSome_iff_exists.mp this rcases this with ⟨Srule, HSrule⟩ + have : smod.outputs.find? ident = none := by + have := ‹MatchInterface imod smod›.outputs_present ident + rw [AssocList.find?_mapVal] at hruleIn'none + cases h : AssocList.find? ident imod.outputs; rw [h] at hruleIn'none + rw [h] at this; simp [-AssocList.find?_eq] at this; assumption + rw [h] at this; rw [h] at hruleIn'none; injection hruleIn'none + have hrule_another : (AssocList.mapVal (fun x => @liftL S K) smod.outputs).find? ident = none := by + rw [←AssocList.find?_map_comm]; simp only [*]; rfl have : (AssocList.mapVal (fun x => liftR) smod₂.outputs).find? ident = some (@liftR S _ Srule) := by rw [←AssocList.find?_map_comm]; rw [HSrule]; rfl have s : (smod.product smod₂).outputs.getIO ident = liftR (smod₂.outputs.getIO ident) := by - have : Disjoint smod smod₂ := MatchInterface_Disjoint hdisj - rcases this with ⟨l,r⟩ skip; dsimp [Module.product, PortMap.getIO]; - rw [AssocList.append_find_right_disjoint (a := (AssocList.mapVal (fun x => liftL) smod.outputs)) (AssocList.disjoint_keys_mapVal_both r) this] - rw [HSrule]; rfl + rw [AssocList.append_find_right, this] + · rw [HSrule]; rfl + · rw [hrule_another] rw [rw_rule_execution s] dsimp [liftL]; refine ⟨?_, rfl⟩; convert hrule₃; simp · solve_by_elim [existSR_append_right, existSR_liftR'] diff --git a/DataflowRewriter/Rewriter.lean b/DataflowRewriter/Rewriter.lean index 14d5d34..04d91c4 100644 --- a/DataflowRewriter/Rewriter.lean +++ b/DataflowRewriter/Rewriter.lean @@ -211,6 +211,9 @@ def followInput' (g : ExprHigh String) (inst input : String) : RewriteResult (Ne def followInput (g : ExprHigh String) (inst input : String) : Option (NextNode String) := (followInput' g inst input).toOption +def findType (g : ExprHigh String) (typ : String) : List String := + g.modules.foldl (λ l a b => if b.snd = typ then a :: l else l) [] + def calcSucc (g : ExprHigh String) : Option (Std.HashMap String (Array String)) := g.modules.foldlM (λ succ k v => do let a ← v.fst.output.foldlM (λ succ' (k' v' : InternalPort String) => do