-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzero_task1_finetune.py
219 lines (206 loc) · 8.63 KB
/
zero_task1_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from rouge import Rouge
import copy
import os
import xml.dom.minidom
from transformers import BertTokenizer, BertForMaskedLM, BertForSequenceClassification,BertModel
from dataset import *
import logging
logging.basicConfig(level=logging.INFO)
import torch
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader, random_split
import random
from transformers import BertTokenizer, BertForMaskedLM, BertForSequenceClassification, AdamW, get_scheduler
import numpy as np
import argparse
from torch.utils.data import DataLoader
import numpy as np
from sklearn.metrics import accuracy_score
# args
parser = argparse.ArgumentParser()
parser.add_argument("--gpu", type=int, default=3, help="gpu")
parser.add_argument("--epochs", type=int, default=0, help="learning rate")
parser.add_argument("--batch_size", type=int, default=500, help="batch_size")
parser.add_argument("--lr", type=float, default=5e-5, help="learning rate")
parser.add_argument("--eps", type=float, default=1e-8, help="adam_epsilon")
parser.add_argument("--seed", type=int, default=0, help="adam_epsilon")
parser.add_argument("--cpu", type=bool, default=False, help="use cpu")
args = parser.parse_args()
# set seed
random.seed(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
# set device
use_cuda = torch.cuda.is_available()
if use_cuda:
torch.cuda.set_device(args.gpu)
device = args.gpu
if args.cpu:
device = torch.device('cpu')
# dataset
class owndataset():
def __init__(self, texts, labels):
self.texts = texts
self.labels = labels
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = self.texts[idx]
label = self.labels[idx]
return text, label
train_path = "/home/zijian/Scripts_new/all_data_temp_train"
test_path = "/home/zijian/Scripts_new/all_data_temp_test"
dev_path = "/home/zijian/Scripts_new/all_data_temp_dev"
all_data_path = "/home/zijian/Scripts_new/all_data_temp"
train_datas, train_labels = get_all_taskone_dataset(train_path, all_data_path)
test_datas, test_labels = get_all_taskone_dataset(test_path, all_data_path)
dev_datas, dev_labels = get_all_taskone_dataset(dev_path, all_data_path)
train_dataset = owndataset(train_datas, train_labels)
test_dataset = owndataset(test_datas, test_labels)
dev_dataset = owndataset(dev_datas, dev_labels)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=True)
dev_loader = DataLoader(dev_dataset, batch_size=args.batch_size, shuffle=True)
# model & tokenizer & optimizer
model = BertForMaskedLM.from_pretrained('bert-base-uncased').to(device)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
optimizer = AdamW(model.parameters(), lr=args.lr)
num_training_steps = args.epochs * len(train_loader)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps
)
model.train()
for epoch in range(args.epochs):
model.train()
# todo: text和labels 都需要padding么?这个转化为tensor的标准流程是咋样的
for events, labels in train_loader:
input_ids, token_type_ids = convert_text_to_ids(tokenizer, events)
input_ids = seq_padding(tokenizer, input_ids)
token_type_ids = seq_padding(tokenizer, token_type_ids)
labels_ids, labels_token = convert_text_to_ids(tokenizer, labels)
labels_ids = seq_padding(tokenizer, labels_ids)
input_ids, token_type_ids, labels_ids = input_ids.long(), token_type_ids.long(), labels_ids.long()
input_ids = input_ids.to(device)
token_type_ids = token_type_ids.to(device)
labels_ids = labels_ids.to(device)
outputs = model(input_ids=input_ids, labels=labels_ids)
loss = outputs.loss
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
print('/n')
print(outputs.loss)
text1 = 'include'
tokenized_text1 = tokenizer.tokenize(text1)
indexed_tokens_include = tokenizer.convert_tokens_to_ids(tokenized_text1)
# exclude number
text2 = 'except'
tokenized_text2 = tokenizer.tokenize(text2)
indexed_tokens_except = tokenizer.convert_tokens_to_ids(tokenized_text2)
hit = 0
tp = 0
tn = 0
fp = 0
fn = 0
all = 0
model.eval()
for events, labels in dev_loader:
with torch.no_grad():
input_ids, token_type_ids = convert_text_to_ids(tokenizer, events)
input_ids = seq_padding(tokenizer, input_ids)
token_type_ids = seq_padding(tokenizer, token_type_ids)
labels_ids, labels_token = convert_text_to_ids(tokenizer, labels)
labels_ids = seq_padding(tokenizer, labels_ids)
input_ids, token_type_ids, labels_ids = input_ids.long(), token_type_ids.long(), labels_ids.long()
input_ids = input_ids.to(device)
token_type_ids = token_type_ids.to(device)
labels_ids = labels_ids.to(device)
outputs = model(input_ids=input_ids, token_type_ids=token_type_ids, labels=labels_ids)
pred_logits = outputs.logits
bz = len(input_ids)
for i in range(bz):
ids = input_ids[i]
new_id = ids.cpu().numpy().tolist()
event_text = tokenizer.decode(input_ids[i])
tokenized_text = tokenizer.tokenize(event_text)
masked_index = new_id.index(103)
label_text = tokenizer.decode(labels_ids[i])
tokenized_label_text = tokenizer.tokenize(label_text)
pred_logit = pred_logits[i]
if pred_logit[masked_index][indexed_tokens_include] > pred_logit[masked_index][indexed_tokens_except]:
pred_id = 'include'
else:
pred_id = 'except'
result = tokenized_label_text[masked_index]
if pred_id == result:
hit += 1
if pred_id == result and pred_id == 'include':
tp += 1
if pred_id == result and pred_id == 'except':
tn += 1
if pred_id != result and pred_id == 'include':
fp += 1
if pred_id != result and pred_id == 'except':
fn += 1
all += 1
print(" dev accuracy is " + str(hit / all))
print(" dev evaluate " + str(all) + " tp " + str(tp) + ' tn ' + str(tn) + " fp " + str(fp) + " fn " + str(fn))
print('finish dev')
hit = 0
tp = 0
tn = 0
fp = 0
fn = 0
all = 0
model.eval()
for events, labels in test_loader:
with torch.no_grad():
input_ids, token_type_ids = convert_text_to_ids(tokenizer, events)
input_ids = seq_padding(tokenizer, input_ids)
token_type_ids = seq_padding(tokenizer, token_type_ids)
labels_ids, labels_token = convert_text_to_ids(tokenizer, labels)
labels_ids = seq_padding(tokenizer, labels_ids)
input_ids, token_type_ids, labels_ids = input_ids.long(), token_type_ids.long(), labels_ids.long()
input_ids = input_ids.to(device)
token_type_ids = token_type_ids.to(device)
labels_ids = labels_ids.to(device)
outputs = model(input_ids=input_ids, token_type_ids=token_type_ids, labels=labels_ids)
pred_logits = outputs.logits
bz = len(input_ids)
for i in range(bz):
ids = input_ids[i]
new_id = ids.cpu().numpy().tolist()
event_text = tokenizer.decode(input_ids[i])
tokenized_text = tokenizer.tokenize(event_text)
masked_index = new_id.index(103)
label_text = tokenizer.decode(labels_ids[i])
tokenized_label_text = tokenizer.tokenize(label_text)
pred_logit = pred_logits[i]
if pred_logit[masked_index][indexed_tokens_include] > pred_logit[masked_index][indexed_tokens_except]:
pred_id = 'include'
else:
pred_id = 'except'
result = tokenized_label_text[masked_index]
if pred_id == result:
hit += 1
if pred_id == result and pred_id == 'include':
tp += 1
if pred_id == result and pred_id == 'except':
tn += 1
if pred_id != result and pred_id == 'include':
fp += 1
if pred_id != result and pred_id == 'except':
fn += 1
all += 1
print(" test accuracy is " + str(hit / all))
print(" test evaluate " + str(all) + " tp " + str(tp) + ' tn ' + str(tn) + " fp " + str(fp) + " fn " + str(fn))
print('finish test')
torch.save(model, str(args.lr) + " " + str(args.epochs) + " task1_finetune_checkpoint.pkl")