-
Notifications
You must be signed in to change notification settings - Fork 43
/
convert_to_hf.py
205 lines (170 loc) · 7.41 KB
/
convert_to_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import json
import os
import re
import shutil
import torch
from safetensors.torch import save_model
from spqr_quant import QuantizedLinear
from transformers import AutoConfig, AutoTokenizer
def get_int_dtype(nbits: int) -> torch.dtype:
if nbits <= 8:
return torch.int8
if nbits <= 16:
return torch.int16
if nbits <= 32:
return torch.int32
if nbits <= 64:
return torch.int64
raise ValueError(f"No dtype available for {nbits}-bit codebooks")
@torch.inference_mode()
def pack_int_data(data: torch.IntTensor, nbits: int) -> torch.IntTensor:
data[data >= 2 ** (nbits - 1)] -= 2**nbits
return data.to(get_int_dtype(nbits))
def get_num_layers(config) -> int:
match config.model_type:
case "llama" | "mistral" | "mixtral" | "gemma" | "phi3" | "qwen2":
return config.num_hidden_layers
case unknown_type:
raise NotImplementedError(f"Can't get number of layers for {unknown_type}")
def get_layers_prefix(config) -> str:
match config.model_type:
case "llama" | "mistral" | "mixtral" | "gemma" | "phi3" | "qwen2":
return "model.layers"
case unknown_type:
raise NotImplementedError(f"Can't get layers prefix for {unknown_type}")
def get_converted_state_dict(config, nbits: int, in_path: os.PathLike) -> [dict, list[str]]:
state_dict = {}
modules_to_not_convert = []
num_layers = get_num_layers(config)
layers_prefix = get_layers_prefix(config)
for i in range(num_layers):
layer = torch.load(os.path.join(in_path, f"{i}.pth"))
for name, p in layer.named_parameters():
if torch.is_floating_point(p.data):
p.data = p.data.half()
else:
p.data = pack_int_data(p.data, nbits)
if "quantized_weight." not in name:
modules_to_not_convert.append(f"{layers_prefix}.{i}.{name}")
else:
name = re.sub("quantized_weight.", "", name)
state_dict[f"{layers_prefix}.{i}.{name}"] = p.data
for key, value in torch.load(os.path.join(in_path, "not_quantized_weights.pt")).items():
state_dict[key] = value.half()
modules_to_not_convert.append(key)
if "lm_head.weight" not in modules_to_not_convert:
modules_to_not_convert.append("lm_head.weight")
return state_dict, modules_to_not_convert
def get_metadata(args_path: str) -> dict:
quant_args = torch.load(args_path)
return {"bits": quant_args["wbits"], "beta1": quant_args["qq_groupsize"], "beta2": quant_args["groupsize"]}
def update_config(config_dict: dict, spqr_metadata: dict[str, int], modules_to_not_convert: list[str]):
config_dict["quantization_config"] = {
"quant_method": "spqr",
"beta1": spqr_metadata["beta1"],
"beta2": spqr_metadata["beta2"],
"bits": spqr_metadata["bits"],
}
config_dict["torch_dtype"] = None
config_dict["_attn_implementation_autoset"] = False
config_dict["architectures"] = []
return config_dict
def add_inference_code(model_type: str, save_path: os.PathLike):
if os.path.isdir(f"./transformers/{model_type}"):
shutil.copytree(f"./transformers/{model_type}", save_path, dirs_exist_ok=True)
else:
print(f"No predefined PreTrainedModel exists for {model_type}. You'll have to copy-paste some code yourself.")
def replace_with_spqr_linear(
model,
quantization_config_shapes=None,
modules_to_not_convert=None,
current_key_name=None,
):
for name, module in model.named_children():
if current_key_name is None:
current_key_name = []
current_key_name.append(name)
if isinstance(module, QuantizedLinear):
# Check if the current key is not in the `modules_to_not_convert`
if ".".join(current_key_name) + ".weight" not in modules_to_not_convert:
tensor_name = ".".join(current_key_name)
quantization_config_shapes[f"{tensor_name}.dense_weights.shape"] = module.dense_weights.shape[0]
quantization_config_shapes[f"{tensor_name}.row_offsets.shape"] = module.row_offsets.shape[0]
quantization_config_shapes[f"{tensor_name}.col_vals.shape"] = module.col_vals.shape[0]
quantization_config_shapes[f"{tensor_name}.in_perm.shape"] = module.in_perm.shape[0]
# Store the module class in case we need to transpose the weight later
model._modules[name].source_cls = type(module)
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(False)
if len(list(module.children())) > 0:
_, has_been_replaced = replace_with_spqr_linear(
module,
quantization_config_shapes=quantization_config_shapes,
modules_to_not_convert=modules_to_not_convert,
current_key_name=current_key_name,
)
# Remove the last key for recursion
current_key_name.pop(-1)
return model, True
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(add_help=True)
parser.add_argument(
"--model",
type=str,
help="Path to the model to base config on, as in AutoConfig.from_pretrained()",
)
parser.add_argument(
"--config_path",
type=str,
help="Path to the model to base config on, as in AutoConfig.from_pretrained()",
)
parser.add_argument(
"--in_path_pt",
type=str,
help="Path of the checkpoint to convert",
)
parser.add_argument(
"--out_path",
type=str,
help="Path to save HF compatible checkpoint to",
)
parser.add_argument(
"--save_safetensors",
action="store_true",
help="Whether to save in safetensors format",
)
parser.add_argument(
"--trust_remote_code",
action="store_true",
help="Whether to trust remote code",
)
parser.add_argument(
"--load_model",
action="store_true",
help="Whether to load model",
)
parser.add_argument(
"--save_tokenizer",
action="store_true",
help="Whether to save tokenizer",
)
args = parser.parse_args()
old_config = AutoConfig.from_pretrained(args.model, trust_remote_code=args.trust_remote_code)
metadata = get_metadata(os.path.join(args.config_path, "args.pt"))
modules_to_not_convert = torch.load(os.path.join(args.config_path, "not_quantized_weights.pt")).keys()
model = torch.load(args.in_path_pt)
# convert to safetensors
if args.save_safetensors:
# load dummy model
# torch.save(model, os.path.join(args.out_path, "pytorch_model.bin"))
save_model(model, os.path.join(args.out_path, "model.safetensors"), metadata={"format": "pt"})
if args.save_tokenizer:
tokenizer = AutoTokenizer.from_pretrained(args.model)
tokenizer.save_pretrained(args.out_path)
new_config_dict = update_config(old_config.to_diff_dict(), metadata, list(modules_to_not_convert))
new_config_dict["quantization_config"]["modules_to_not_convert"] = list(modules_to_not_convert)
new_config_dict["quantization_config"]["shapes"] = {}
replace_with_spqr_linear(model, new_config_dict["quantization_config"]["shapes"], set(modules_to_not_convert))
with open(os.path.join(args.out_path, "config.json"), "w") as config_file:
json.dump(new_config_dict, config_file, indent=4)