Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

tvm inference performance get worse when batchsize is larger #5

Open
VertexC opened this issue Mar 2, 2021 · 1 comment
Open

tvm inference performance get worse when batchsize is larger #5

VertexC opened this issue Mar 2, 2021 · 1 comment

Comments

@VertexC
Copy link
Owner

VertexC commented Mar 2, 2021

Currently tvm schedules are mostly optimized for batch_size=1. To use batch_size is larger than 1, one needs to compile modle with AutoTvm.

https://discuss.tvm.apache.org/t/more-slower-use-tvm-than-mxnet-when-i-use-batch-forward/1810/2

@VertexC
Copy link
Owner Author

VertexC commented Mar 2, 2021

Cannot find config for target=cuda -keys=cuda,gpu -max_num_threads=1024 -model=unknown -thread_warp_size=32, workload=('conv2d_nchw.cuda', ('TENSOR', (2, 3, 224, 224), 'float32'), ('TENSOR', (64, 3, 3, 3), 'float32'), (1, 1), (1, 1, 1, 1), (1, 1), 'float32'). A fallback configuration is used, which may bring great performance regression.
Cannot find config for target=cuda -keys=cuda,gpu -max_num_threads=1024 -model=unknown -thread_warp_size=32, workload=('conv2d_nchw.cuda', ('TENSOR', (2, 64, 224, 224), 'float32'), ('TENSOR', (64, 64, 3, 3), 'float32'), (1, 1), (1, 1, 1, 1), (1, 1), 'float32'). A fallback configuration is used, which may bring great performance regression.
Cannot find config for target=cuda -keys=cuda,gpu -max_num_threads=1024 -model=unknown -thread_warp_size=32, workload=('conv2d_nchw.cuda', ('TENSOR', (2, 64, 112, 112), 'float32'), ('TENSOR', (128, 64, 3, 3), 'float32'), (1, 1), (1, 1, 1, 1), (1, 1), 'float32'). A fallback configuration is used, which may bring great performance regression.
Cannot find config for target=cuda -keys=cuda,gpu -max_num_threads=1024 -model=unknown -thread_warp_size=32, workload=('conv2d_nchw.cuda', ('TENSOR', (2, 128, 112, 112), 'float32'), ('TENSOR', (128, 128, 3, 3), 'float32'), (1, 1), (1, 1, 1, 1), (1, 1), 'float32'). A fallback configuration is used, which may bring great performance regression.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant