We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Currently tvm schedules are mostly optimized for batch_size=1. To use batch_size is larger than 1, one needs to compile modle with AutoTvm.
https://discuss.tvm.apache.org/t/more-slower-use-tvm-than-mxnet-when-i-use-batch-forward/1810/2
The text was updated successfully, but these errors were encountered:
Cannot find config for target=cuda -keys=cuda,gpu -max_num_threads=1024 -model=unknown -thread_warp_size=32, workload=('conv2d_nchw.cuda', ('TENSOR', (2, 3, 224, 224), 'float32'), ('TENSOR', (64, 3, 3, 3), 'float32'), (1, 1), (1, 1, 1, 1), (1, 1), 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=cuda -keys=cuda,gpu -max_num_threads=1024 -model=unknown -thread_warp_size=32, workload=('conv2d_nchw.cuda', ('TENSOR', (2, 64, 224, 224), 'float32'), ('TENSOR', (64, 64, 3, 3), 'float32'), (1, 1), (1, 1, 1, 1), (1, 1), 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=cuda -keys=cuda,gpu -max_num_threads=1024 -model=unknown -thread_warp_size=32, workload=('conv2d_nchw.cuda', ('TENSOR', (2, 64, 112, 112), 'float32'), ('TENSOR', (128, 64, 3, 3), 'float32'), (1, 1), (1, 1, 1, 1), (1, 1), 'float32'). A fallback configuration is used, which may bring great performance regression. Cannot find config for target=cuda -keys=cuda,gpu -max_num_threads=1024 -model=unknown -thread_warp_size=32, workload=('conv2d_nchw.cuda', ('TENSOR', (2, 128, 112, 112), 'float32'), ('TENSOR', (128, 128, 3, 3), 'float32'), (1, 1), (1, 1, 1, 1), (1, 1), 'float32'). A fallback configuration is used, which may bring great performance regression.
Sorry, something went wrong.
No branches or pull requests
Currently tvm schedules are mostly optimized for batch_size=1. To use batch_size is larger than 1, one needs to compile modle with AutoTvm.
https://discuss.tvm.apache.org/t/more-slower-use-tvm-than-mxnet-when-i-use-batch-forward/1810/2
The text was updated successfully, but these errors were encountered: