-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
650 lines (565 loc) · 23.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
#!/usr/bin/env python3
""" ImageNet Training Script
This is intended to be a lean and easily modifiable ImageNet training script that reproduces ImageNet
training results with some of the latest networks and training techniques. It favours canonical PyTorch
and standard Python style over trying to be able to 'do it all.' That said, it offers quite a few speed
and training result improvements over the usual PyTorch example scripts. Repurpose as you see fit.
This script was started from an early version of the PyTorch ImageNet example
(https://github.com/pytorch/examples/tree/master/imagenet)
NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples
(https://github.com/NVIDIA/apex/tree/master/examples/imagenet)
Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman)
"""
import logging
import os
import shutil
from contextlib import suppress
from datetime import datetime
from functools import partial
import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as NativeDDP
from timm import utils
from timm.data import create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset
from timm.layers import convert_splitbn_model, convert_sync_batchnorm, set_fast_norm
from timm.loss import JsdCrossEntropy, SoftTargetCrossEntropy, BinaryCrossEntropy, LabelSmoothingCrossEntropy
from timm.models import create_model, safe_model_name, resume_checkpoint, load_checkpoint
from timm.optim import create_optimizer_v2, optimizer_kwargs
from timm.scheduler import create_scheduler_v2, scheduler_kwargs
from timm.utils import ApexScaler, NativeScaler
from engine import train_one_epoch, validate
from models import *
from data import create_dataset
import torchstat, torchinfo, torchsummary
from calflops import calculate_flops
from utils.parser import _parse_args
try:
from apex import amp
from apex.parallel import DistributedDataParallel as ApexDDP
from apex.parallel import convert_syncbn_model
has_apex = True
except ImportError:
has_apex = False
has_native_amp = False
try:
if getattr(torch.cuda.amp, 'autocast') is not None:
has_native_amp = True
except AttributeError:
pass
try:
import wandb
has_wandb = True
except ImportError:
has_wandb = False
try:
from functorch.compile import memory_efficient_fusion
has_functorch = True
except ImportError as e:
has_functorch = False
has_compile = hasattr(torch, 'compile')
_logger = logging.getLogger('train')
def main():
# region Initial
args, args_text = _parse_args()
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
device = utils.init_distributed_device(args)
# <<<------modified
output_dir = None
log_dir = None
if utils.is_primary(args):
model_name = "_".join([safe_model_name(args.model), str(args.img_size)])
if args.output != None:
args.output = os.path.join(args.output, model_name)
if args.experiment:
exp_name = args.experiment
else:
exp_name = '-'.join([
datetime.now().strftime("%Y%m%d-%H%M%S"),
safe_model_name(args.model),
str(data_config['input_size'][-1])
])
output_dir = utils.get_outdir(args.output if args.output else './output/train', exp_name, inc=not args.override)
if args.override:
shutil.rmtree(output_dir)
os.makedirs(output_dir)
log_dir = os.path.join(output_dir, "train_log.txt")
# modified ------>>>
utils.setup_default_logging(log_path=log_dir)
args.prefetcher = not args.no_prefetcher
args.grad_accum_steps = max(1, args.grad_accum_steps)
if args.distributed:
_logger.info(
'Training in distributed mode with multiple processes, 1 device per process.'
f'Process {args.rank}, total {args.world_size}, device {args.device}.')
else:
_logger.info(f'Training with a single process on 1 device ({args.device}).')
assert args.rank >= 0
# resolve AMP arguments based on PyTorch / Apex availability
use_amp = None
amp_dtype = torch.float16
if args.amp:
if args.amp_impl == 'apex':
assert has_apex, 'AMP impl specified as APEX but APEX is not installed.'
use_amp = 'apex'
assert args.amp_dtype == 'float16'
else:
assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).'
use_amp = 'native'
assert args.amp_dtype in ('float16', 'bfloat16')
if args.amp_dtype == 'bfloat16':
amp_dtype = torch.bfloat16
utils.random_seed(args.seed, args.rank)
if args.fuser:
utils.set_jit_fuser(args.fuser)
if args.fast_norm:
set_fast_norm()
in_chans = 3
if args.in_chans is not None:
in_chans = args.in_chans
elif args.input_size is not None:
in_chans = args.input_size[0]
# <<<------ modified
if args.use_deterministic:
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
torch.backends.cudnn.deterministic = True
utils.random_seed(0)
# modified ------>>>
# endregion
# region Model
model = create_model(
args.model,
pretrained=args.pretrained,
in_chans=in_chans,
num_classes=args.num_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=args.drop_block,
global_pool=args.gp,
bn_momentum=args.bn_momentum,
bn_eps=args.bn_eps,
scriptable=args.torchscript,
checkpoint_path=args.initial_checkpoint,
**args.model_kwargs,
)
if args.head_init_scale is not None:
with torch.no_grad():
model.get_classifier().weight.mul_(args.head_init_scale)
model.get_classifier().bias.mul_(args.head_init_scale)
if args.head_init_bias is not None:
nn.init.constant_(model.get_classifier().bias, args.head_init_bias)
if args.num_classes is None:
assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.'
args.num_classes = model.num_classes # FIXME handle model default vs config num_classes more elegantly
if args.grad_checkpointing:
model.set_grad_checkpointing(enable=True)
if utils.is_primary(args):
_logger.info(
f'Model {safe_model_name(args.model)} created, param count:{sum([m.numel() for m in model.parameters()])}')
data_config = resolve_data_config(vars(args), model=model, verbose=utils.is_primary(args))
# setup augmentation batch splits for contrastive loss or split bn
num_aug_splits = 0
if args.aug_splits > 0:
assert args.aug_splits > 1, 'A split of 1 makes no sense'
num_aug_splits = args.aug_splits
# enable split bn (separate bn stats per batch-portion)
if args.split_bn:
assert num_aug_splits > 1 or args.resplit
model = convert_splitbn_model(model, max(num_aug_splits, 2))
# move model to GPU, enable channels last layout if set
model.to(device=device)
if args.channels_last:
model.to(memory_format=torch.channels_last)
# setup synchronized BatchNorm for distributed training
if args.distributed and args.sync_bn:
args.dist_bn = '' # disable dist_bn when sync BN active
assert not args.split_bn
if has_apex and use_amp == 'apex':
# Apex SyncBN used with Apex AMP
# WARNING this won't currently work with models using BatchNormAct2d
model = convert_syncbn_model(model)
else:
model = convert_sync_batchnorm(model)
if utils.is_primary(args):
_logger.info(
'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.')
if args.torchscript:
assert not args.torchcompile
assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
model = torch.jit.script(model)
# endregion
# region Optimizer
if not args.lr:
global_batch_size = args.batch_size * args.world_size * args.grad_accum_steps
batch_ratio = global_batch_size / args.lr_base_size
if not args.lr_base_scale:
on = args.opt.lower()
args.lr_base_scale = 'sqrt' if any([o in on for o in ('ada', 'lamb')]) else 'linear'
if args.lr_base_scale == 'sqrt':
batch_ratio = batch_ratio ** 0.5
args.lr = args.lr_base * batch_ratio
if utils.is_primary(args):
_logger.info(
f'Learning rate ({args.lr}) calculated from base learning rate ({args.lr_base}) '
f'and effective global batch size ({global_batch_size}) with {args.lr_base_scale} scaling.')
optimizer = create_optimizer_v2(
model,
**optimizer_kwargs(cfg=args),
**args.opt_kwargs,
)
# <<<------ modified
if args.auto_scale_warmup_min_lr:
args.warmup_lr = args.warmup_lr * batch_ratio
args.min_lr = args.min_lr * batch_ratio
# modifed ------>>>
# endregion
# region AMP on Loss & Optimizer
# setup automatic mixed-precision (AMP) loss scaling and op casting
amp_autocast = suppress # do nothing
loss_scaler = None
if use_amp == 'apex':
assert device.type == 'cuda'
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
loss_scaler = ApexScaler()
if utils.is_primary(args):
_logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
elif use_amp == 'native':
try:
amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype)
except (AttributeError, TypeError):
# fallback to CUDA only AMP for PyTorch < 1.10
assert device.type == 'cuda'
amp_autocast = torch.cuda.amp.autocast
if device.type == 'cuda' and amp_dtype == torch.float16:
# loss scaler only used for float16 (half) dtype, bfloat16 does not need it
loss_scaler = NativeScaler()
if utils.is_primary(args):
_logger.info('Using native Torch AMP. Training in mixed precision.')
else:
if utils.is_primary(args):
_logger.info('AMP not enabled. Training in float32.')
# endregion
# region Resume
# optionally resume from a checkpoint
resume_epoch = None
if args.resume:
resume_epoch = resume_checkpoint(
model,
args.resume,
optimizer=None if args.no_resume_opt else optimizer,
loss_scaler=None if args.no_resume_opt else loss_scaler,
log_info=utils.is_primary(args),
)
# endregion
# region EMA
# setup exponential moving average of model weights, SWA could be used here too
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before DDP wrapper
model_ema = utils.ModelEmaV2(
model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else None)
if args.resume:
load_checkpoint(model_ema.module, args.resume, use_ema=True)
# endregion
# region Distributed
# setup distributed training
if args.distributed:
if has_apex and use_amp == 'apex':
# Apex DDP preferred unless native amp is activated
if utils.is_primary(args):
_logger.info("Using NVIDIA APEX DistributedDataParallel.")
model = ApexDDP(model, delay_allreduce=True)
else:
if utils.is_primary(args):
_logger.info("Using native Torch DistributedDataParallel.")
model = NativeDDP(model, device_ids=[device], broadcast_buffers=not args.no_ddp_bb, find_unused_parameters=False)
# NOTE: EMA model does not need to be wrapped by DDP
if args.torchcompile:
# torch compile should be done after DDP
assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.'
model = torch.compile(model, backend=args.torchcompile)
# endregion
# region Dataset
# create the train and eval datasets
if args.data and not args.data_dir:
args.data_dir = args.data
dataset_train = create_dataset(
args.dataset,
root=args.data_dir,
split=args.train_split,
is_training=True,
class_map=args.class_map,
download=args.dataset_download,
batch_size=args.batch_size,
seed=args.seed,
repeats=args.epoch_repeats,
)
dataset_eval = create_dataset(
args.dataset,
root=args.data_dir,
split=args.val_split,
is_training=False,
class_map=args.class_map,
download=args.dataset_download,
batch_size=args.batch_size,
)
# endregion
# region Dataloader
# setup mixup / cutmix
collate_fn = None
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
mixup_args = dict(
mixup_alpha=args.mixup,
cutmix_alpha=args.cutmix,
cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob,
switch_prob=args.mixup_switch_prob,
mode=args.mixup_mode,
label_smoothing=args.smoothing,
num_classes=args.num_classes
)
if args.prefetcher:
assert not num_aug_splits # collate conflict (need to support deinterleaving in collate mixup)
collate_fn = FastCollateMixup(**mixup_args)
else:
mixup_fn = Mixup(**mixup_args)
# wrap dataset in AugMix helper
if num_aug_splits > 1:
dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)
# create data loaders w/ augmentation pipeiine
train_interpolation = args.train_interpolation
if args.no_aug or not train_interpolation:
train_interpolation = data_config['interpolation']
loader_train = create_loader(
dataset_train,
input_size=data_config['input_size'],
batch_size=args.batch_size,
is_training=True,
use_prefetcher=args.prefetcher,
no_aug=args.no_aug,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
re_split=args.resplit,
scale=args.scale,
ratio=args.ratio,
hflip=args.hflip,
vflip=args.vflip,
color_jitter=args.color_jitter,
auto_augment=args.aa,
num_aug_repeats=args.aug_repeats,
num_aug_splits=num_aug_splits,
interpolation=train_interpolation,
mean=data_config['mean'],
std=data_config['std'],
num_workers=args.workers,
distributed=args.distributed,
collate_fn=collate_fn,
pin_memory=args.pin_mem,
device=device,
use_multi_epochs_loader=args.use_multi_epochs_loader,
worker_seeding=args.worker_seeding,
)
eval_workers = args.workers
if args.distributed and ('tfds' in args.dataset or 'wds' in args.dataset):
# FIXME reduces validation padding issues when using TFDS, WDS w/ workers and distributed training
eval_workers = min(2, args.workers)
loader_eval = create_loader(
dataset_eval,
input_size=data_config['input_size'],
batch_size=args.validation_batch_size or args.batch_size,
is_training=False,
use_prefetcher=args.prefetcher,
interpolation=data_config['interpolation'],
mean=data_config['mean'],
std=data_config['std'],
num_workers=eval_workers,
distributed=args.distributed,
crop_pct=data_config['crop_pct'],
pin_memory=args.pin_mem,
device=device,
)
# endregion
# region Loss
# setup loss function
if args.jsd_loss:
assert num_aug_splits > 1 # JSD only valid with aug splits set
train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing)
elif mixup_active:
# smoothing is handled with mixup target transform which outputs sparse, soft targets
if args.bce_loss:
train_loss_fn = BinaryCrossEntropy(target_threshold=args.bce_target_thresh)
else:
train_loss_fn = SoftTargetCrossEntropy()
elif args.smoothing:
if args.bce_loss:
train_loss_fn = BinaryCrossEntropy(smoothing=args.smoothing, target_threshold=args.bce_target_thresh)
else:
train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
train_loss_fn = nn.CrossEntropyLoss()
train_loss_fn = train_loss_fn.to(device=device)
validate_loss_fn = nn.CrossEntropyLoss().to(device=device)
# endregion
# region Checkpoint
# setup checkpoint saver and eval metric tracking
eval_metric = args.eval_metric
best_metric = None
best_epoch = None
saver = None
output_dir = None
if utils.is_primary(args):
if args.experiment:
exp_name = args.experiment
else:
exp_name = '-'.join([
datetime.now().strftime("%Y%m%d-%H%M%S"),
safe_model_name(args.model),
str(data_config['input_size'][-1])
])
output_dir = utils.get_outdir(args.output if args.output else './output/train', exp_name)
decreasing = True if eval_metric == 'loss' else False
saver = utils.CheckpointSaver(
model=model,
optimizer=optimizer,
args=args,
model_ema=model_ema,
amp_scaler=loss_scaler,
checkpoint_dir=output_dir,
recovery_dir=output_dir,
decreasing=decreasing,
max_history=args.checkpoint_hist
)
with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
f.write(args_text)
if utils.is_primary(args) and args.log_wandb:
if has_wandb:
wandb.init(project=args.experiment, config=args)
else:
_logger.warning(
"You've requested to log metrics to wandb but package not found. "
"Metrics not being logged to wandb, try `pip install wandb`")
# endregion
# region LR_Scheduler
# setup learning rate schedule and starting epoch
updates_per_epoch = (len(loader_train) + args.grad_accum_steps - 1) // args.grad_accum_steps
lr_scheduler, num_epochs = create_scheduler_v2(
optimizer,
**scheduler_kwargs(args),
updates_per_epoch=updates_per_epoch,
)
start_epoch = 0
if args.start_epoch is not None:
# a specified start_epoch will always override the resume epoch
start_epoch = args.start_epoch
elif resume_epoch is not None:
start_epoch = resume_epoch
if lr_scheduler is not None and start_epoch > 0:
if args.sched_on_updates:
lr_scheduler.step_update(start_epoch * updates_per_epoch)
else:
lr_scheduler.step(start_epoch)
if utils.is_primary(args):
_logger.info(
f'Scheduled epochs: {num_epochs}. LR stepped per {"epoch" if lr_scheduler.t_in_epochs else "update"}.')
# endregion
# region Summary
# <<<------ modified
if args.summary != None:
batch_size, img_size = args.batch_size, args.img_size
if utils.is_primary(args):
if args.summary == "torchstat":
torchstat.stat(model, (3, img_size, img_size))
if args.summary == "torchinfo":
model_stats = str(torchinfo.summary(model, (1 ,3, img_size, img_size),depth=3,device=device,verbose=1))
_logger.info(f'Model:\n {model_stats}')
if args.summary == "torchsummary":
model_stats = torchsummary.summary(model, (3, img_size, img_size), 1, device=device)
_logger.info(f'Model:\n {model_stats}')
if args.benchmark != None:
batch_size, img_size = args.batch_size, args.img_size
if utils.is_primary(args):
if args.benchmark == "calflops":
flops, macs, params = calculate_flops(model, (1 ,3, img_size, img_size), output_as_string=True, output_precision=4)
_logger.info(
f"FLOPs:{flops} MACs:{macs} Params:{params}")
# modified ------>>>
# endregion
try:
for epoch in range(start_epoch, num_epochs):
if hasattr(dataset_train, 'set_epoch'):
dataset_train.set_epoch(epoch)
elif args.distributed and hasattr(loader_train.sampler, 'set_epoch'):
loader_train.sampler.set_epoch(epoch)
train_metrics = train_one_epoch(
epoch,
model,
loader_train,
optimizer,
train_loss_fn,
args,
lr_scheduler=lr_scheduler,
saver=saver,
output_dir=output_dir,
amp_autocast=amp_autocast,
loss_scaler=loss_scaler,
model_ema=model_ema,
mixup_fn=mixup_fn,
_logger=_logger,
)
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
if utils.is_primary(args):
_logger.info("Distributing BatchNorm running means and vars")
utils.distribute_bn(model, args.world_size, args.dist_bn == 'reduce')
eval_metrics = validate(
model,
loader_eval,
validate_loss_fn,
args,
amp_autocast=amp_autocast,
_logger=_logger,
)
if model_ema is not None and not args.model_ema_force_cpu:
if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
utils.distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
ema_eval_metrics = validate(
model_ema.module,
loader_eval,
validate_loss_fn,
args,
amp_autocast=amp_autocast,
log_suffix=' (EMA)',
_logger=_logger,
)
eval_metrics = ema_eval_metrics
if output_dir is not None:
lrs = [param_group['lr'] for param_group in optimizer.param_groups]
utils.update_summary(
epoch,
train_metrics,
eval_metrics,
filename=os.path.join(output_dir, 'summary.csv'),
lr=sum(lrs) / len(lrs),
write_header=best_metric is None,
log_wandb=args.log_wandb and has_wandb,
)
if saver is not None:
# save proper checkpoint with eval metric
save_metric = eval_metrics[eval_metric]
best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric)
if lr_scheduler is not None:
# step LR for next epoch
lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])
except KeyboardInterrupt:
pass
if best_metric is not None:
_logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
if __name__ == '__main__':
main()