-
Notifications
You must be signed in to change notification settings - Fork 509
/
DFS.py
209 lines (179 loc) · 8 KB
/
DFS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#DFS or Depth First Search is another traversal algorithm.
#In this, we traverse to the depths of the tree/graph until we can't go further, in which case, we go back up and repeat the process for the unvisited nodes
#DFS Traversals can be of 3 types - PreOrder, InOrder, and PostOrder.
#Again , to implement this, we'll need a BST which we have already coded. So we'll use that.
class Node():
def __init__(self, data):
self.data = data
self.left = None
self.right = None
class BST():
def __init__(self):
self.root = None
self.number_of_nodes = 0
#For the insert method, we check if the root node is None, then we make the root node point to the new node
#Otherwise, we create a temporary pointer which points to the root node at first.
#Then we compare the data of the new node to the data of the node pointed by the temporary node.
#If it is greater then first we check if the right child of the temporary node exists, if it does, then we update the temporary node to its right child
#Otherwise we make the new node the right child of the temporary node
#And if the new node data is less than the temporary node data, we follow the same procedure as above this time with the left child.
#The complexity is O(log N) in avg case and O(n) in worst case.
def insert(self, data):
new_node = Node(data)
if self.root == None:
self.root = new_node
self.number_of_nodes += 1
return
else:
current_node = self.root
while(current_node.left != new_node) and (current_node.right != new_node):
if new_node.data > current_node.data:
if current_node.right == None:
current_node.right = new_node
else:
current_node = current_node.right
elif new_node.data < current_node.data:
if current_node.left == None:
current_node.left = new_node
else:
current_node = current_node.left
self.number_of_nodes += 1
return
#Now we will implement the lookup method.
#It will follow similar logic as to the insert method to reach the correct position.
#Only instead of inserting a new node we will return "Found" if the node pointed by the temporary node contains the same value we are looking for
def search(self,data):
if self.root == None:
return "Tree Is Empty"
else:
current_node = self.root
while True:
if current_node == None:
return "Not Found"
if current_node.data == data:
return "Found"
elif current_node.data > data:
current_node = current_node.left
elif current_node.data < data:
current_node = current_node.right
#Finally comes the very complicated remove method.
#This one is too complicated for me to explain while writing. So I'll just write the code down with some comments
#explaining which conditions are being checked
def remove(self, data):
if self.root == None: #Tree is empty
return "Tree Is Empty"
current_node = self.root
parent_node = None
while current_node!=None: #Traversing the tree to reach the desired node or the end of the tree
if current_node.data > data:
parent_node = current_node
current_node = current_node.left
elif current_node.data < data:
parent_node = current_node
current_node = current_node.right
else: #Match is found. Different cases to be checked
#Node has left child only
if current_node.right == None:
if parent_node == None:
self.root = current_node.left
return
else:
if parent_node.data > current_node.data:
parent_node.left = current_node.left
return
else:
parent_node.right = current_node.left
return
#Node has right child only
elif current_node.left == None:
if parent_node == None:
self.root = current_node.right
return
else:
if parent_node.data > current_node.data:
parent_node.left = current_node.right
return
else:
parent_node.right = current_node.left
return
#Node has neither left nor right child
elif current_node.left == None and current_node.right == None:
if parent_node == None: #Node to be deleted is root
current_node = None
return
if parent_node.data > current_node.data:
parent_node.left = None
return
else:
parent_node.right = None
return
#Node has both left and right child
elif current_node.left != None and current_node.right != None:
del_node = current_node.right
del_node_parent = current_node.right
while del_node.left != None: #Loop to reach the leftmost node of the right subtree of the current node
del_node_parent = del_node
del_node = del_node.left
current_node.data = del_node.data #The value to be replaced is copied
if del_node == del_node_parent: #If the node to be deleted is the exact right child of the current node
current_node.right = del_node.right
return
if del_node.right == None: #If the leftmost node of the right subtree of the current node has no right subtree
del_node_parent.left = None
return
else: #If it has a right subtree, we simply link it to the parent of the del_node
del_node_parent.left = del_node.right
return
return "Not Found"
#Now we'll implementthe three kinds of DFS Traversals.
def DFS_Inorder(self):
return inorder_traversal(self.root, [])
def DFS_Preorder(self):
return preorder_traversal(self.root, [])
def DFS_Postorder(self):
return postorder_traversal(self.root, [])
def inorder_traversal(node, DFS_list):
if node.left:
inorder_traversal(node.left, DFS_list)
DFS_list.append(node.data)
if node.right:
inorder_traversal(node.right, DFS_list)
return DFS_list
def preorder_traversal(node,DFS_list):
DFS_list.append(node.data)
if node.left:
preorder_traversal(node.left, DFS_list)
if node.right:
preorder_traversal(node.right, DFS_list)
return DFS_list
def postorder_traversal(node, DFS_list):
if node.left:
postorder_traversal(node.left, DFS_list)
if node.right:
postorder_traversal(node.right, DFS_list)
DFS_list.append(node.data)
return DFS_list
my_bst = BST()
my_bst.insert(5)
my_bst.insert(3)
my_bst.insert(7)
my_bst.insert(1)
my_bst.insert(13)
my_bst.insert(65)
my_bst.insert(0)
my_bst.insert(10)
'''
5
3 7
1 13
0 10 65
'''
#Inorder traversal for this tree : [0, 1, 3, 5, 7, 10, 13, 65]
#Preorder Traversal for this tree : [5, 3, 1, 0, 7, 13, 10, 65]
#Postorder Traversal for this tree : [0, 1, 3, 10, 65, 13, 7, 5]
print(my_bst.DFS_Inorder())
#[0, 1, 3, 5, 7, 10, 13, 65]
print(my_bst.DFS_Preorder())
#[5, 3, 1, 0, 7, 13, 10, 65]
print(my_bst.DFS_Postorder())
#[0, 1, 3, 10, 65, 13, 7, 5]