-
Notifications
You must be signed in to change notification settings - Fork 8
/
human_walker.py
executable file
·615 lines (514 loc) · 29.1 KB
/
human_walker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
__author__ = 'yuwenhao'
import numpy as np
from gym import utils
from gym.envs.dart import dart_env
import joblib
import os
import time
import pydart2 as pydart
class DartHumanWalkerEnv(dart_env.DartEnv, utils.EzPickle):
def __init__(self):
self.control_bounds = np.array([[1.0] * 23, [-1.0] * 23])
self.action_scale = np.array([60.0, 160, 60, 100, 80, 60, 60, 160, 60, 100, 80, 60, 150, 150, 100, 15,100,15, 30, 15,100,15, 30])
self.action_scale *= 1.0
self.action_penalty_weight = np.array([1.0]*23)#np.array([1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5])
obs_dim = 57
self.t = 0
self.target_vel = 0.0
self.init_tv = 0.0
self.final_tv = 1.5
self.tv_endtime = 1.0
self.tvel_diff_perc = 1.0
self.smooth_tv_change = True
self.running_average_velocity = False
self.running_avg_rew_only = True
self.avg_rew_weighting = []
self.vel_cache = []
self.init_pos = 0
self.pos_spd = False # Use spd on position in forward direction. Only use when treadmill is used
self.assist_timeout = 0.0 # do not provide pushing assistance after certain time
self.assist_schedule = [[0.0, [2000, 2000]], [3.0, [1500, 1500.0]], [6.0, [1125, 1125]]]
self.reset_range = 0.005
self.rand_target_vel = False
self.init_push = False
self.enforce_target_vel = True
self.const_force = None
self.hard_enforce = False
self.treadmill = False
self.treadmill_vel = -self.init_tv
self.treadmill_init_tv = -0.0
self.treadmill_final_tv = -4.5
self.treadmill_tv_endtime = 6.0
self.base_policy = None
self.push_target = 'pelvis'
self.constrain_dcontrol = 1.0
self.previous_control = None
self.total_act_force = 0
self.total_ass_force = 0
self.energy_weight = 0.3
self.alive_bonus_rew = 9.0
self.cur_step = 0
self.stepwise_rewards = []
self.conseq_limit_pen = 0 # number of steps lying on the wall
self.constrain_2d = True
self.init_balance_pd = 6000.0
self.init_vel_pd = 3000.0
self.end_balance_pd = 6000.0
self.end_vel_pd = 3000.0
self.pd_vary_end = self.target_vel * 6.0
self.current_pd = self.init_balance_pd
self.vel_enforce_kp = self.init_vel_pd
self.local_spd_curriculum = True
self.anchor_kp = np.array([2000.0, 1000.0])
self.curriculum_step_size = 0.1 # 10%
self.min_curriculum_step = 50 # include (0, 0) if distance between anchor point and origin is smaller than this value
# state related
self.contact_info = np.array([0, 0])
self.contact_locations = [[], []]
self.include_additional_info = True
if self.include_additional_info:
obs_dim += len(self.contact_info)
if self.running_average_velocity or self.smooth_tv_change:
obs_dim += 1
self.curriculum_id = 0
self.spd_kp_candidates = None
self.vel_reward_weight = 3.0
self.stride_weight = 0.0
self.init_qs = []
self.init_dqs = []
if self.treadmill:
dart_env.DartEnv.__init__(self, 'kima/kima_human_edited_treadmill.skel', 15, obs_dim, self.control_bounds,
disableViewer=True, dt=0.002)
else:
dart_env.DartEnv.__init__(self, 'kima/kima_human_edited.skel', 15, obs_dim, self.control_bounds,
disableViewer=True, dt=0.002)
# add human joint limit
'''skel = self.robot_skeleton
world = self.dart_world
leftarmConstraint = pydart.constraints.HumanArmJointLimitConstraint(skel.joint('j_bicep_left'),
skel.joint('j_forearm_left'), False)
rightarmConstraint = pydart.constraints.HumanArmJointLimitConstraint(skel.joint('j_bicep_right'),
skel.joint('j_forearm_right'), True)
leftlegConstraint = pydart.constraints.HumanLegJointLimitConstraint(skel.joint('j_thigh_left'),
skel.joint('j_shin_left'),
skel.joint('j_heel_left'), False)
rightlegConstraint = pydart.constraints.HumanLegJointLimitConstraint(skel.joint('j_thigh_right'),
skel.joint('j_shin_right'),
skel.joint('j_heel_right'), True)
leftarmConstraint.add_to_world(world)
rightarmConstraint.add_to_world(world)
leftlegConstraint.add_to_world(world)
rightlegConstraint.add_to_world(world)'''
self.robot_skeleton.set_self_collision_check(True)
for i in range(0, len(self.dart_world.skeletons[0].bodynodes)):
self.dart_world.skeletons[0].bodynodes[i].set_friction_coeff(20)
for i in range(0, len(self.dart_world.skeletons[1].bodynodes)):
self.dart_world.skeletons[1].bodynodes[i].set_friction_coeff(20)
# self.dart_world.set_collision_detector(3)
self.sim_dt = self.dt / self.frame_skip
for bn in self.robot_skeleton.bodynodes:
if len(bn.shapenodes) > 0:
if hasattr(bn.shapenodes[0].shape, 'size'):
shapesize = bn.shapenodes[0].shape.size()
print('density of ', bn.name, ' is ', bn.mass()/np.prod(shapesize))
print('Total mass: ', self.robot_skeleton.mass())
self.use_ref_policy = False
self.ref_policy = None
self.ref_policy_curriculum = np.array([2000, 1000])
self.ref_strength_q = 0.005
self.ref_strength_dq = 0.0005
self.ref_feat_strength = 0.25
self.ref_dfeat_strength = 0.025
self.ref_trajs = []
self.ref_features = []
self.chosen_traj = [0, 0]
self.max_eps_step_ref = 100 # maximum episode step when using reference policy
self.ref_traj_num = 10
utils.EzPickle.__init__(self)
# only 1d
def _spd(self, target_q, id, kp, target_dq=None):
self.Kp = kp
self.Kd = kp * self.sim_dt
if target_dq is not None:
self.Kd = self.Kp
self.Kp *= 0
invM = 1.0 / (self.robot_skeleton.M[id][id] + self.Kd * self.sim_dt)
if target_dq is None:
p = -self.Kp * (self.robot_skeleton.q[id] + self.robot_skeleton.dq[id] * self.sim_dt - target_q[id])
else:
p = 0
d = -self.Kd * (self.robot_skeleton.dq[id] - target_dq)
qddot = invM * (-self.robot_skeleton.c[id] + p + d)
tau = p + d - self.Kd * (qddot) * self.sim_dt
return tau
def _bodynode_spd(self, bn, kp, dof, target_vel=None):
self.Kp = kp
self.Kd = kp * self.sim_dt
if target_vel is not None:
self.Kd = self.Kp
self.Kp *= 0
invM = 1.0 / (bn.mass() + self.Kd * self.sim_dt)
p = -self.Kp * (bn.C[dof] + bn.dC[dof] * self.sim_dt)
if target_vel is None:
target_vel = 0.0
d = -self.Kd * (bn.dC[dof] - target_vel * 1.0) # compensate for average velocity match
qddot = invM * (-bn.C[dof] + p + d)
tau = p + d - self.Kd * (qddot) * self.sim_dt
return tau
def do_simulation(self, tau, n_frames):
for _ in range(n_frames):
force = 0
if self.constrain_2d and (self.t < self.assist_timeout):
force = self._bodynode_spd(self.robot_skeleton.bodynode(self.push_target), self.current_pd, 2)
self.robot_skeleton.bodynode(self.push_target).add_ext_force(np.array([0, 0, force]))
if self.enforce_target_vel and (self.t < self.assist_timeout) and not self.hard_enforce:
tvel = self.target_vel
if self.treadmill:
tvel += self.treadmill_vel
if self.const_force is None:
force = self._bodynode_spd(self.robot_skeleton.bodynode(self.push_target), self.vel_enforce_kp, 0,
tvel * self.tvel_diff_perc)
else:
if self.robot_skeleton.bodynode(self.push_target).dC[0] < tvel*0.5:
force = self.const_force
else:
force = 0
self.push_forces.append(force)
self.robot_skeleton.bodynode(self.push_target).add_ext_force(np.array([force, 0, 0]))
self.total_act_force += np.linalg.norm(tau)
self.total_ass_force += np.abs(force)
self.robot_skeleton.set_forces(tau)
self.dart_world.step()
s = self.state_vector()
if not (np.isfinite(s).all() and (np.abs(s[2:]) < 100).all()):
break
#print(self.total_act_force, self.total_ass_force)
def advance(self, clamped_control):
tau = np.zeros(self.robot_skeleton.ndofs)
tau[6:] = clamped_control * self.action_scale
if self.enforce_target_vel:
if self.hard_enforce and self.treadmill:
current_dq_tread = self.dart_world.skeletons[0].dq
current_dq_tread[0] = self.treadmill_vel # * np.min([self.t/4.0, 1.0])
self.dart_world.skeletons[0].dq = current_dq_tread
elif self.hard_enforce:
current_dq = self.robot_skeleton.dq
current_dq[0] = self.target_vel
self.robot_skeleton.dq = current_dq
self.do_simulation(tau, self.frame_skip)
def clamp_act(self, a):
clamped_control = np.array(a)
for i in range(len(clamped_control)):
if clamped_control[i] > self.control_bounds[0][i]:
clamped_control[i] = self.control_bounds[0][i]
if clamped_control[i] < self.control_bounds[1][i]:
clamped_control[i] = self.control_bounds[1][i]
if self.previous_control is not None:
if clamped_control[i] > self.previous_control[i] + self.constrain_dcontrol:
clamped_control[i] = self.previous_control[i] + self.constrain_dcontrol
elif clamped_control[i] < self.previous_control[i] - self.constrain_dcontrol:
clamped_control[i] = self.previous_control[i] - self.constrain_dcontrol
return clamped_control
def _step(self, a):
if self.use_ref_policy:
current_obs = self._get_obs()
# smoothly increase the target velocity
if self.smooth_tv_change:
self.target_vel = (np.min([self.t, self.tv_endtime]) / self.tv_endtime) * (
self.final_tv - self.init_tv) + self.init_tv
self.treadmill_vel = (np.min([self.t, self.treadmill_tv_endtime]) / self.treadmill_tv_endtime) * (
self.treadmill_final_tv - self.treadmill_init_tv) + self.treadmill_init_tv
self.current_pd = self.init_balance_pd
self.vel_enforce_kp = self.init_vel_pd
if len(self.assist_schedule) > 0:
for sch in self.assist_schedule:
if self.t > sch[0]:
self.current_pd = sch[1][0]
self.vel_enforce_kp = sch[1][1]
posbefore = self.robot_skeleton.bodynode(self.push_target).com()[0]
clamped_control = self.clamp_act(a)
self.advance(np.copy(clamped_control))
posafter = self.robot_skeleton.bodynode(self.push_target).com()[0]
height = self.robot_skeleton.bodynode('head').com()[1]
side_deviation = self.robot_skeleton.bodynode('head').com()[2]
angle = self.robot_skeleton.q[3]
upward = np.array([0, 1, 0])
upward_world = self.robot_skeleton.bodynode('head').to_world(
np.array([0, 1, 0])) - self.robot_skeleton.bodynode('head').to_world(np.array([0, 0, 0]))
upward_world /= np.linalg.norm(upward_world)
ang_cos_uwd = np.dot(upward, upward_world)
ang_cos_uwd = np.arccos(ang_cos_uwd)
forward = np.array([1, 0, 0])
forward_world = self.robot_skeleton.bodynode('head').to_world(
np.array([1, 0, 0])) - self.robot_skeleton.bodynode('head').to_world(np.array([0, 0, 0]))
forward_world /= np.linalg.norm(forward_world)
ang_cos_fwd = np.dot(forward, forward_world)
ang_cos_fwd = np.arccos(ang_cos_fwd)
lateral = np.array([0, 0, 1])
lateral_world = self.robot_skeleton.bodynode('head').to_world(
np.array([0, 0, 1])) - self.robot_skeleton.bodynode('head').to_world(np.array([0, 0, 0]))
lateral_world /= np.linalg.norm(lateral_world)
ang_cos_ltl = np.dot(lateral, lateral_world)
ang_cos_ltl = np.arccos(ang_cos_ltl)
contacts = self.dart_world.collision_result.contacts
total_force_mag = 0
self.contact_info = np.array([0, 0])
stride_reward = 0.0
l_foot_force = np.array([0.0, 0, 0])
r_foot_force = np.array([0.0, 0, 0])
in_contact = False
for contact in contacts:
if contact.skel_id1 == contact.skel_id2:
self_colliding = True
if contact.skel_id1 + contact.skel_id2 == 1:
if contact.bodynode1 == self.robot_skeleton.bodynode(
'l-foot') or contact.bodynode2 == self.robot_skeleton.bodynode('l-foot'):
self.contact_info[0] = 1
total_force_mag += np.linalg.norm(contact.force)
l_foot_force += contact.force
in_contact = True
if self.t > self.tv_endtime:
if len(self.contact_locations[0]) > 0 and np.linalg.norm(self.contact_locations[0][-1] - self.robot_skeleton.bodynode('l-foot').C) > 0.2:
self.contact_locations[0].append(self.robot_skeleton.bodynode('l-foot').C)
stride_reward = self.stride_weight*(- np.abs(
np.linalg.norm(self.contact_locations[0][-1] - self.contact_locations[0][-2]) - 1.2))
if len(self.contact_locations[0]) == 0:
self.contact_locations[0].append(self.robot_skeleton.bodynode('l-foot').C)
if contact.bodynode1 == self.robot_skeleton.bodynode(
'r-foot') or contact.bodynode2 == self.robot_skeleton.bodynode('r-foot'):
self.contact_info[1] = 1
total_force_mag += np.linalg.norm(contact.force)
r_foot_force += contact.force
in_contact = True
if self.t > self.tv_endtime:
if len(self.contact_locations[1]) > 0 and np.linalg.norm(self.contact_locations[1][-1] - self.robot_skeleton.bodynode('r-foot').C) > 0.2:
self.contact_locations[1].append(self.robot_skeleton.bodynode('r-foot').C)
stride_reward = self.stride_weight * (- np.abs(
np.linalg.norm(self.contact_locations[1][-1] - self.contact_locations[1][-2]) - 1.2))
if len(self.contact_locations[1]) == 0:
self.contact_locations[1].append(self.robot_skeleton.bodynode('r-foot').C)
if in_contact:
self.enforce_target_vel = True
else:
self.enforce_target_vel = True
alive_bonus = self.alive_bonus_rew#np.max([1.5 + self.final_tv * 0.5 * self.vel_reward_weight, 4.0])
vel = (posafter - posbefore) / self.dt
vel_rew = 0.0
if self.pos_spd:
self.vel_cache.append(posafter) # actually position cache
else:
self.vel_cache.append(vel)
self.target_vel_cache.append(self.target_vel)
if self.running_average_velocity or self.running_avg_rew_only:
if self.t < self.tv_endtime:
self.avg_rew_weighting.append(1.0)
else:
self.avg_rew_weighting.append(1)
vel_rew_scale = 1.0
if len(self.vel_cache) > int(2.0/self.dt) and (self.running_average_velocity or self.running_avg_rew_only):
self.vel_cache.pop(0)
self.avg_rew_weighting.pop(0)
self.target_vel_cache.pop(0)
else:
vel_rew_scale = 1.0#np.min([len(self.vel_cache) * self.dt, 1.0])
if not self.treadmill:
if self.reference_trajectory is not None:
vel_rew = - np.exp(3.0*(np.abs(self.reference_trajectory[self.cur_step][0] - self.robot_skeleton.com()[0]**2)))
elif self.running_average_velocity or self.running_avg_rew_only:
vel_rew = -self.vel_reward_weight * np.abs(np.mean(self.target_vel_cache) - np.mean(self.vel_cache))
else:
vel_diff = np.abs(self.target_vel - vel)
vel_rew = -3.0 * vel_diff
else:
if self.running_average_velocity or self.running_avg_rew_only:
append_vel = np.ones(int(1.0/self.dt) - len(self.vel_cache)) * (self.target_vel + self.treadmill_vel)
vel_rew = -3.0 *vel_rew_scale* (np.abs(self.target_vel + self.treadmill_vel - np.mean(np.append(self.vel_cache, append_vel))))
else:
vel_rew = -3.0 * (np.abs(self.target_vel + self.treadmill_vel - vel))
if self.t < self.tv_endtime:
vel_rew *= 0.5
# vel_rew *= 0
# action_pen = 5e-1 * (np.square(a)* actuator_pen_multiplier).sum()
action_pen = self.energy_weight * np.abs(a * self.action_penalty_weight).sum()# * (1.5/np.max([2.0,self.target_vel]))
# action_pen += 0.02 * np.sum(np.abs(a* self.robot_skeleton.dq[6:]))
deviation_pen = 3 * abs(side_deviation)
contact_pen = 0.5 * np.square(np.clip(l_foot_force, -2000, 2000)/ 1000.0).sum()+np.square(np.clip(r_foot_force, -2000, 2000)/ 1000.0).sum()
rot_pen = 0.3 * (abs(ang_cos_uwd)) + 0.3 * (abs(ang_cos_fwd)) + 1.5 * (abs(ang_cos_ltl))
# penalize bending of spine
spine_pen = 1.0 * np.sum(np.abs(self.robot_skeleton.q[[18, 19]])) + 1.5 * np.abs(self.robot_skeleton.q[20]) + 0.8 * np.abs(self.robot_skeleton.q[19] + self.robot_skeleton.q[3])
#spine_pen += 0.05 * np.sum(np.abs(self.robot_skeleton.q[[8, 14]]))
dq_pen = 0.0 * np.sum(np.square(self.robot_skeleton.dq[6:]))
#torso_vel_pen = 0.15*np.abs(self.robot_skeleton.bodynode('thorax').com_spatial_velocity()[0:3]).sum()
reward = vel_rew + alive_bonus - action_pen - deviation_pen - rot_pen*0 - spine_pen - dq_pen# - contact_pen #+ stride_reward # - torso_vel_pen
pos_rew = vel_rew + alive_bonus - deviation_pen - rot_pen - spine_pen
neg_pen = - action_pen
ref_reward = 0
ref_feat_rew = 0
self.t += self.dt
self.cur_step += 1
s = self.state_vector()
if self.use_ref_policy:
#reward -= self.ref_strength_q * np.abs(self.robot_skeleton.q - target_q).sum()
#reward -= self.ref_strength_dq * np.abs(self.robot_skeleton.dq - target_dq).sum()
#ref_reward = self.ref_strength_q * np.abs(self.robot_skeleton.q - target_q).sum() + self.ref_strength_dq * np.abs(self.robot_skeleton.dq - target_dq).sum()
'''cur_poses = [self.robot_skeleton.bodynode('l-lowerarm').C,
self.robot_skeleton.bodynode('r-lowerarm').C, self.robot_skeleton.bodynode('l-foot').C,
self.robot_skeleton.bodynode('r-foot').C]
cur_dposes = [self.robot_skeleton.bodynode('l-lowerarm').dC,
self.robot_skeleton.bodynode('r-lowerarm').C, self.robot_skeleton.bodynode('l-foot').dC,
self.robot_skeleton.bodynode('r-foot').dC]
for p in range(len(cur_poses)):
ref_reward += self.ref_strength_q * np.abs(cur_poses[p] - target_poses[p]).sum()
ref_reward += self.ref_strength_dq * np.abs(cur_dposes[p] - target_dposes[p]).sum()
reward += - ref_reward'''
ref_state_vec = self.ref_trajs[self.chosen_traj[0]][self.chosen_traj[1] + self.cur_step]
weight = np.exp(- 0.04*(self.cur_step-1))
ref_reward -= self.ref_strength_q * weight * np.sum(np.abs(self.state_vector() - ref_state_vec)[0:int(len(self.robot_skeleton.q)/2)])
ref_reward -= self.ref_strength_dq * weight * np.sum(
np.abs(self.state_vector() - ref_state_vec)[int(len(self.robot_skeleton.q) / 2):])
for k in self.ref_features[self.chosen_traj[0]][self.chosen_traj[1] + self.cur_step].keys():
ref_feat_rew -= self.ref_strength_q * weight * np.sum(np.square(self.robot_skeleton.bodynode(k).C - self.ref_features[self.chosen_traj[0]][self.chosen_traj[1] + self.cur_step][k][0]))
ref_feat_rew -= self.ref_strength_dq * weight * np.sum(np.square(self.robot_skeleton.bodynode(k).dC - self.ref_features[self.chosen_traj[0]][self.chosen_traj[1] + self.cur_step][k][1]))
reward += 1.0 + ref_reward + ref_feat_rew
done = not (np.isfinite(s).all() and (np.abs(s[2:]) < 100).all() and
(height - self.init_height > -0.35) and (height - self.init_height < 1.0) and (
abs(ang_cos_uwd) < 1.2) and (abs(ang_cos_fwd) < 1.2)
and np.abs(angle) < 1.2 and
np.abs(self.robot_skeleton.q[5]) < 1.2 and np.abs(self.robot_skeleton.q[4]) < 1.2 and np.abs(self.robot_skeleton.q[3]) < 1.2
and np.abs(side_deviation) < 0.9)
if self.use_ref_policy and self.cur_step > self.max_eps_step_ref:
done = True
self.stepwise_rewards.append(reward)
self.previous_control = clamped_control
ob = self._get_obs()
broke_sim = False
if not (np.isfinite(s).all() and (np.abs(s[2:]) < 100).all()):
broke_sim = True
'''work = np.sum(np.abs(clamped_control * self.action_scale * self.robot_skeleton.dq[6:])) * self.dt
self.total_work += work
cot = self.total_work / (self.robot_skeleton.mass() * 9.81 * self.robot_skeleton.C[0])
print(cot)'''
return ob, reward, done, {'broke_sim': broke_sim, 'vel_rew': vel_rew, 'action_pen': action_pen,
'deviation_pen': deviation_pen, 'curriculum_id': self.curriculum_id,
'curriculum_candidates': self.spd_kp_candidates, 'done_return': done,
'dyn_model_id': 0, 'state_index': 0, 'com': self.robot_skeleton.com(),
'pos_rew': pos_rew, 'neg_pen': neg_pen, 'contact_locations':self.contact_locations,
'contact_force': l_foot_force + r_foot_force,
'contact_forces':[l_foot_force,r_foot_force],
'ref_reward': ref_reward, 'ref_feat_rew':ref_feat_rew, 'avg_vel':np.mean(self.vel_cache),
}
def _get_obs(self):
state = np.concatenate([
self.robot_skeleton.q[1:],
self.robot_skeleton.dq,
])
if self.include_additional_info:
state = np.concatenate([state, self.contact_info])
if self.rand_target_vel or self.smooth_tv_change:
state = np.concatenate([state, [self.target_vel]])
if self.running_average_velocity:
state = np.concatenate([state, [(self.robot_skeleton.q[0] - self.init_pos) / self.t]])
return state
def reset_model(self):
#print('resetttt')
self.dart_world.reset()
self.total_work = 0
init_q = self.robot_skeleton.q
init_dq = self.robot_skeleton.dq
if len(self.init_dqs) > 0:
init_pid = np.random.randint(len(self.init_qs))
init_q = self.init_qs[init_pid]
init_dq = self.init_dqs[init_pid]
qpos = init_q + self.np_random.uniform(low=-self.reset_range, high=self.reset_range, size=self.robot_skeleton.ndofs)
qvel = init_dq + self.np_random.uniform(low=-self.reset_range*10, high=self.reset_range*10, size=self.robot_skeleton.ndofs)
s = np.sign(np.random.random()-0.5) * self.np_random.uniform(low=.005, high=.05)
#qpos[1] += s
#qpos[7] -= s
if self.rand_target_vel:
self.target_vel = np.random.uniform(0.8, 2.5)
if self.local_spd_curriculum:
self.spd_kp_candidates = [self.anchor_kp]
self.curriculum_id = np.random.randint(len(self.spd_kp_candidates))
chosen_curriculum = self.spd_kp_candidates[self.curriculum_id]
self.init_balance_pd = chosen_curriculum[0]
self.end_balance_pd = chosen_curriculum[0]
self.init_vel_pd = chosen_curriculum[1]
self.end_vel_pd = chosen_curriculum[1]
if self.init_push:
qvel[0] = self.target_vel
self.set_state(qpos, qvel)
self.t = self.dt
self.cur_step = 0
self.stepwise_rewards = []
self.init_pos = self.robot_skeleton.q[0]
self.conseq_limit_pen = 0
self.current_pd = self.init_balance_pd
self.vel_enforce_kp = self.init_vel_pd
if self.const_force is not None:
self.const_force = self.init_vel_pd
self.contact_info = np.array([0, 0])
self.contact_locations = [[], []]
self.push_forces = []
self.previous_control = None
self.init_height = self.robot_skeleton.bodynode('head').C[1]
self.moving_bin = None
self.vel_cache = []
self.target_vel_cache = []
self.avg_rew_weighting = []
self.reference_trajectory = None
if np.random.randint(2) == 0:
self.push_target = 'pelvis'
#else:
# self.push_target = 'thorax'
if self.use_ref_policy:
if len(self.ref_trajs) == 0:
self.use_ref_policy = False
current_pd = self.current_pd
vel_enforce_kp = self.vel_enforce_kp
for i in range(50):
one_traj = []
one_traj_feature = []
o = self.reset()
self.init_balance_pd = self.ref_policy_curriculum[0]
self.init_vel_pd = self.ref_policy_curriculum[1]
one_traj.append(self.state_vector())
one_traj_feature.append({'l-foot': [self.robot_skeleton.bodynode('l-foot').C,
self.robot_skeleton.bodynode('l-foot').dC],
'r-foot': [self.robot_skeleton.bodynode('r-foot').C,
self.robot_skeleton.bodynode('r-foot').dC],
'l-lowerarm': [self.robot_skeleton.bodynode('l-lowerarm').C,
self.robot_skeleton.bodynode('l-lowerarm').dC],
'r-lowerarm': [self.robot_skeleton.bodynode('r-lowerarm').C,
self.robot_skeleton.bodynode('r-lowerarm').dC]})
for j in range(400):
a, v = self.ref_policy.act(False, o)
o, r, d, _ = self._step(a)
one_traj.append(self.state_vector())
one_traj_feature.append({'l-foot':[self.robot_skeleton.bodynode('l-foot').C,self.robot_skeleton.bodynode('l-foot').dC],
'r-foot':[self.robot_skeleton.bodynode('r-foot').C,self.robot_skeleton.bodynode('r-foot').dC],
'l-lowerarm':[self.robot_skeleton.bodynode('l-lowerarm').C, self.robot_skeleton.bodynode('l-lowerarm').dC],
'r-lowerarm':[self.robot_skeleton.bodynode('r-lowerarm').C, self.robot_skeleton.bodynode('r-lowerarm').dC]})
if d:
break
if len(one_traj) > 300:
self.ref_trajs.append(one_traj)
self.ref_features.append(one_traj_feature)
if len(self.ref_trajs) > self.ref_traj_num:
break
self.current_pd = current_pd
self.vel_enforce_kp = vel_enforce_kp
self.use_ref_policy = True
self.reset()
self.chosen_traj[0] = np.random.randint(len(self.ref_trajs))
select_from_transit = np.random.randint(2) == 0
if select_from_transit:
self.chosen_traj[1] = np.random.randint(int(self.tv_endtime / self.dt))
else:
self.chosen_traj[1] = np.random.randint(int(self.tv_endtime / self.dt), len(self.ref_trajs[self.chosen_traj[0]]) - self.max_eps_step_ref-1)
self.set_state_vector(self.ref_trajs[self.chosen_traj[0]][self.chosen_traj[1]])
self.t = self.chosen_traj[1] * self.dt
return self._get_obs()
def viewer_setup(self):
if not self.disableViewer:
# self.track_skeleton_id = 0
self._get_viewer().scene.tb.trans[2] = -5.5