-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy patheval.py
141 lines (127 loc) · 5.34 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
import torch
import torch.nn.functional as F
import logging
from sklearn.preprocessing import label_binarize
from sklearn.metrics import roc_auc_score
def test(step, dataset_test, name, n_share, G, Cs,
open=False, entropy=False, thr=None):
G.eval()
for c in Cs:
c.eval()
## Known Score Calculation.
correct = 0
correct_close = 0
size = 0
per_class_num = np.zeros((n_share + 1))
per_class_correct = np.zeros((n_share + 1)).astype(np.float32)
class_list = np.unique(dataset_test.dataset.labels)
open_class = 1000
for batch_idx, data in enumerate(dataset_test):
with torch.no_grad():
img_t, label_t = data[0].cuda(), data[1].cuda()
feat = G(img_t)
out_t = Cs[0](feat)
pred = out_t.data.max(1)[1]
correct_close += pred.eq(label_t.data).cpu().sum()
out_t = F.softmax(out_t)
entr = -torch.sum(out_t * torch.log(out_t), 1).data.cpu().numpy()
if entropy:
pred_unk = -torch.sum(out_t * torch.log(out_t), 1)
ind_unk = np.where(entr > thr)[0]
else:
out_open = Cs[1](feat)
out_open = F.softmax(out_open.view(out_t.size(0), 2, -1),1)
tmp_range = torch.range(0, out_t.size(0)-1).long().cuda()
pred_unk = out_open[tmp_range, 0, pred]
ind_unk = np.where(pred_unk.data.cpu().numpy() > 0.5)[0]
pred[ind_unk] = open_class
correct += pred.eq(label_t.data).cpu().sum()
pred = pred.cpu().numpy()
k = label_t.data.size()[0]
for i, t in enumerate(class_list):
t_ind = np.where(label_t.data.cpu().numpy() == t)
correct_ind = np.where(pred[t_ind[0]] == t)
per_class_correct[i] += float(len(correct_ind[0]))
per_class_num[i] += float(len(t_ind[0]))
size += k
if open:
label_t = label_t.data.cpu().numpy()
if batch_idx == 0:
label_all = label_t
anomal_score = pred_unk.data.cpu().numpy()
else:
anomal_score = np.r_[anomal_score, pred_unk.data.cpu().numpy()]
label_all = np.r_[label_all, label_t]
if open:
Y_test = label_binarize(label_all, classes=[i for i in class_list])
roc = roc_auc_score(Y_test[:, -1], anomal_score)
else:
roc = 0.0
logger = logging.getLogger(__name__)
logging.basicConfig(filename=name, format="%(message)s")
logger.setLevel(logging.INFO)
close_count = float(per_class_num[:len(class_list) - 1].sum())
acc_close_all = 100. *float(correct_close) / close_count
output = ["step %s"%step,
"acc close all %s" % float(acc_close_all),
"roc %s"% float(roc)]
logger.info(output)
print(output)
return acc_close_all, roc
def test_pretrained(step, dataset_test, name, n_share, G,
open=False, entropy=False, thr=None):
G.eval()
## Known Score Calculation.
correct = 0
correct_close = 0
size = 0
per_class_num = np.zeros((n_share + 1))
per_class_correct = np.zeros((n_share + 1)).astype(np.float32)
class_list = np.unique(dataset_test.dataset.labels)
open_class = 1000
for batch_idx, data in enumerate(dataset_test):
with torch.no_grad():
img_t, label_t = data[0].cuda(), data[1].cuda()
out_t = G(img_t)
pred = out_t.data.max(1)[1]
correct_close += pred.eq(label_t.data).cpu().sum()
out_t = F.softmax(out_t)
entr = -torch.sum(out_t * torch.log(out_t), 1).data.cpu().numpy()
pred_unk = -torch.sum(out_t * torch.log(out_t), 1)
ind_unk = np.where(entr > thr)[0]
pred[ind_unk] = open_class
correct += pred.eq(label_t.data).cpu().sum()
pred = pred.cpu().numpy()
k = label_t.data.size()[0]
for i, t in enumerate(class_list):
t_ind = np.where(label_t.data.cpu().numpy() == t)
correct_ind = np.where(pred[t_ind[0]] == t)
per_class_correct[i] += float(len(correct_ind[0]))
per_class_num[i] += float(len(t_ind[0]))
size += k
if open:
label_t = label_t.data.cpu().numpy()
if batch_idx == 0:
label_all = label_t
anomaly_score = pred_unk.data.cpu().numpy()
else:
anomaly_score = np.r_[anomaly_score, pred_unk.data.cpu().numpy()]
label_all = np.r_[label_all, label_t]
if open:
Y_test = label_binarize(label_all, classes=[i for i in class_list])
roc = roc_auc_score(Y_test[:, -1], anomaly_score)
#roc_softmax = roc_auc_score(Y_test[:, -1], -np.max(pred_all, axis=1))
else:
roc = 0.0
logger = logging.getLogger(__name__)
logging.basicConfig(filename=name, format="%(message)s")
logger.setLevel(logging.INFO)
close_count = float(per_class_num[:len(class_list) - 1].sum())
acc_close_all = 100. *float(correct_close) / close_count
output = ["step %s"%step,
"acc close all %s" % float(acc_close_all),
"roc %s"% float(roc)]
logger.info(output)
print(output)
return acc_close_all, roc