forked from ICDM-UESTC/DisenIDP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
214 lines (162 loc) · 8.07 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import datetime
import Constants
from tqdm import tqdm
from models.models import *
from torch.utils.data import DataLoader
from dataLoader import datasets, Read_data, Split_data
from utils.parsers import parser
from utils.Metrics import Metrics
from utils.EarlyStopping import *
from utils.graphConstruct import ConHypergraph
metric = Metrics()
opt = parser.parse_args()
def init_seeds(seed=2023):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
def get_performance(crit, pred, gold):
loss = crit(pred, gold.contiguous().view(-1))
pred = pred.max(1)[1]
gold = gold.contiguous().view(-1)
n_correct = pred.data.eq(gold.data)
n_correct = n_correct.masked_select(gold.ne(Constants.PAD).data).sum().float()
return loss, n_correct
def model_training(model, train_loader, epoch):
''' model training '''
torch.autograd.set_detect_anomaly(True)
total_loss = 0.0
n_total_words = 0.0
n_total_correct = 0.0
print('start training: ', datetime.datetime.now())
# training
model.train()
with tqdm(total=len(train_loader)) as t:
for step, (cascade_item, label, cascade_time, label_time, cascade_len) in enumerate(train_loader):
n_words = label.data.ne(Constants.PAD).sum().float().item()
n_total_words += n_words
model.zero_grad()
cascade_item = trans_to_cuda(cascade_item.long())
tar = trans_to_cuda(label.long())
cascade_time = trans_to_cuda(cascade_time.long())
label_time = trans_to_cuda(label_time.long())
pred, ssl_loss, ss_loss2 = model(cascade_item, tar)
loss, n_correct = get_performance(model.loss_function, pred, tar)
if torch.isinf(loss).any():
print(0)
loss = loss + opt.beta * ssl_loss + opt.beta2 * ss_loss2
loss.backward()
model.optimizer.step()
model.optimizer.update_learning_rate()
### tqdm parameter
t.set_description(desc="Epoch %i" % epoch)
t.set_postfix(steps=step, loss=loss.data.item())
t.update(1)
total_loss += loss.item()
n_total_correct += n_correct
print('\tTotal Loss:\t%.3f' % total_loss)
return total_loss, n_total_correct/n_total_words
def model_testing(model, test_loader, k_list=[10, 50, 100]):
''' Epoch operation in evaluation phase '''
scores = {}
for k in k_list:
scores['hits@' + str(k)] = 0
scores['map@' + str(k)] = 0
n_total_words = 0.0
n_correct = 0.0
total_loss = 0.0
print('start predicting: ', datetime.datetime.now())
model.eval()
with torch.no_grad():
for step, (cascade_item, label, cascade_time, label_time, cascade_len) in enumerate(test_loader):
# for i, batch in enumerate(validation_data): #tqdm(validation_data, mininterval=2, desc=' - (Validation) ', leave=False):
cascade_item = trans_to_cuda(cascade_item.long())
cascade_time = trans_to_cuda(cascade_time.long())
y_pred = model.model_prediction(cascade_item)
y_pred = y_pred.detach().cpu()
tar = label.view(-1).detach().cpu()
pred = y_pred.max(1)[1]
gold = tar.contiguous().view(-1)
correct = pred.data.eq(gold.data)
n_correct = correct.masked_select(gold.ne(Constants.PAD).data).sum().float()
scores_batch, scores_len = metric.compute_metric(y_pred, tar, k_list)
n_total_words += scores_len
for k in k_list:
scores['hits@' + str(k)] += scores_batch['hits@' + str(k)] * scores_len
scores['map@' + str(k)] += scores_batch['map@' + str(k)] * scores_len
for k in k_list:
scores['hits@' + str(k)] = scores['hits@' + str(k)] / n_total_words
scores['map@' + str(k)] = scores['map@' + str(k)] / n_total_words
return scores, n_correct/n_total_words
def train_test(epoch, model, train_loader, val_loader, test_loader):
total_loss, accuracy = model_training(model, train_loader, epoch)
val_scores, val_accuracy = model_testing(model, val_loader)
test_scores, test_accuracy = model_testing(model, test_loader)
return total_loss, val_scores, test_scores, val_accuracy.item(), test_accuracy.item()
def main(data_path, seed=2023):
init_seeds(seed)
# ========= Preparing DataLoader =========#
#### Divide training set, validation set and test set
if opt.preprocess:
Split_data(data_path, train_rate=0.8, valid_rate=0.1, load_dict=False)
#### Read training set, validation set and test set
train, valid, test, user_size = Read_data(data_path)
train_data = datasets(train, opt.max_lenth)
val_data = datasets(valid, opt.max_lenth)
test_data = datasets(test, opt.max_lenth)
#### Build DataLoader
train_loader = DataLoader(dataset=train_data, batch_size=opt.batch_size, shuffle=True, num_workers=8)
val_loader = DataLoader(dataset=val_data, batch_size=opt.batch_size, shuffle=False, num_workers=8)
test_loader = DataLoader(dataset=test_data, batch_size=opt.batch_size, shuffle=False, num_workers=8)
# ========= Preparing graph and hypergraph =========#
opt.n_node = user_size
HG_Item, HG_User = ConHypergraph(opt.data_name, opt.n_node, opt.window)
HG_Item = trans_to_cuda(HG_Item)
HG_User = trans_to_cuda(HG_User)
# ========= Early_stopping =========#
save_model_path = opt.save_path + 'HGCN.pt'
early_stopping = EarlyStopping(patience=opt.patience, verbose=True, path=save_model_path)
# ========= Building Model =========#
model = trans_to_cuda(LSTMGNN(hypergraphs=[HG_Item, HG_User], args = opt, dropout=opt.dropout))
# ========= Metrics =========#
top_K = [10, 50, 100]
best_results = {}
for K in top_K:
best_results['epoch%d' % K] = [0, 0]
best_results['metric%d' % K] = [0, 0]
validation_history = 0.0
for epoch in range(opt.epoch):
total_loss, val_scores, test_scores, val_accuracy, test_accuracy = train_test(epoch, model, train_loader, val_loader, test_loader)
if validation_history <= sum(val_scores.values()):
validation_history = sum(val_scores.values())
for K in top_K:
test_scores['hits@' + str(K)] = test_scores['hits@' + str(K)] * 100
test_scores['map@' + str(K)] = test_scores['map@' + str(K)] * 100
best_results['metric%d' % K][0] = test_scores['hits@' + str(K)]
best_results['epoch%d' % K][0] = epoch
best_results['metric%d' % K][1] = test_scores['map@' + str(K)]
best_results['epoch%d' % K][1] = epoch
print(" -validation scores:-------------------------------------")
print(' - (validation) accuracy: {accu:3.3f} %'.format(accu=100 * val_accuracy))
for metric in val_scores.keys():
print(metric + ' ' + str(val_scores[metric]* 100))
print(" -test scores:-------------------------------------")
print(' - (testing) accuracy: {accu:3.3f} %'.format(accu=100 * test_accuracy))
for K in top_K:
print('train_loss:\t%.4f\tRecall@%d: %.4f\tMAP@%d: %.4f\tEpoch: %d, %d' %
(total_loss, K, best_results['metric%d' % K][0], K, best_results['metric%d' % K][1],
best_results['epoch%d' % K][0], best_results['epoch%d' % K][1]))
early_stopping(-sum(list(val_scores.values())), model)
if early_stopping.early_stop:
print("Early_Stopping")
break
# ========= Final score =========#
print(" -(Finished!!) \n test scores: ")
print("--------------------------------------------")
for K in top_K:
print('Recall@%d: %.4f\tMAP@%d: %.4f\tEpoch: %d, %d' %
(K, best_results['metric%d' % K][0], K, best_results['metric%d' % K][1],
best_results['epoch%d' % K][0], best_results['epoch%d' % K][1]))
if __name__ == "__main__":
main(opt.data_name, seed=2023)