

Batch optimization in VW via LBFGS

Miroslav Dudík 12/16/2011

Outline

- gradient descent and Newton method
- LBFGS
- LBFGS in VW

Smooth convex unconstrained optimization

```
Goal: \min_{\mathbf{w} \in \mathbb{R}^d} f(\mathbf{w})
```

where *f* is strongly convex and twice continuously differentiable

Smooth convex unconstrained optimization

Goal: $\min_{\mathbf{w} \in \mathbb{R}^d} f(\mathbf{w})$

where *f* is strongly convex and twice continuously differentiable

Our objective:

$$f(\mathbf{w}) = \sum_{i=1}^{n} loss(\mathbf{w}; x_i, y_i) + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- possibly weighted loss
- regularization can have coordinate-specific scaling (specified by user)

- initialize w₀
- for t=1,2,...: move in the direction of the steepest descent $\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla f(\mathbf{w}_t)$

Gradient descent update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla f(\mathbf{w}_t)$$

Gradient descent update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla f(\mathbf{w}_t)$$

gradient

$$\mathbf{g}_t = \nabla f(\mathbf{w}_t)$$

Equivalently:

approximate

$$f(\mathbf{w}) \approx f(\mathbf{w}_t) + \mathbf{g}_t^{\mathsf{T}}(\mathbf{w}_t - \mathbf{w}) + \frac{1}{2\eta} \|\mathbf{w}_t - \mathbf{w}\|^2$$

Gradient descent update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla f(\mathbf{w}_t)$$

gradient

$$\mathbf{g}_t = \nabla f(\mathbf{w}_t)$$

Equivalently:

approximate

$$f(\mathbf{w}) \approx f(\mathbf{w}_t) + \mathbf{g}_t^{\mathsf{T}}(\mathbf{w}_t - \mathbf{w}) + \frac{1}{2\eta} \|\mathbf{w}_t - \mathbf{w}\|^2$$

optimize approximation:

$$\mathbf{w}_{t+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \left(f(\mathbf{w}_t) + \mathbf{g}_t^{\mathsf{T}}(\mathbf{w}_t - \mathbf{w}) + \frac{1}{2\eta} \|\mathbf{w}_t - \mathbf{w}\|^2 \right)$$

Gradient descent update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla f(\mathbf{w}_t)$$

gradient

$$\mathbf{g}_t = \nabla f(\mathbf{w}_t)$$

Equivalently:

approximate

$$f(\mathbf{w}) \approx f(\mathbf{w}_t) + \mathbf{g}_t^{\mathsf{T}}(\mathbf{w}_t - \mathbf{w}) + \frac{1}{2\eta} \|\mathbf{w}_t - \mathbf{w}\|^2$$

optimize approximation:

$$\mathbf{w}_{t+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \left(f(\mathbf{w}_t) + \mathbf{g}_t^{\mathsf{T}}(\mathbf{w}_t - \mathbf{w}) + \frac{1}{2\eta} \|\mathbf{w}_t - \mathbf{w}\|^2 \right)$$

Can we replace quadratic term by a tighter approximation?

Newton method

Hessian

$$\mathbf{H}_t = \nabla^2 f(\mathbf{w}_t)$$

Better approximation

$$f(\mathbf{w}) \approx f(\mathbf{w}_t) + \mathbf{g}_t^{\mathsf{T}}(\mathbf{w}_t - \mathbf{w}) + \frac{1}{2}(\mathbf{w}_t - \mathbf{w})^{\mathsf{T}} \mathbf{H}_t(\mathbf{w}_t - \mathbf{w})$$

Update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{H}_t^{-1} \mathbf{g}_t$$

Newton method

Hessian

$$\mathbf{H}_t = \nabla^2 f(\mathbf{w}_t)$$

Better approximation

$$f(\mathbf{w}) \approx f(\mathbf{w}_t) + \mathbf{g}_t^{\mathsf{T}}(\mathbf{w}_t - \mathbf{w}) + \frac{1}{2}(\mathbf{w}_t - \mathbf{w})^{\mathsf{T}} \mathbf{H}_t(\mathbf{w}_t - \mathbf{w})$$

Update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{H}_t^{-1} \mathbf{g}_t$$

Problem: Hessian can be too big (matrix of size dxd)

LBFGS = a quasi-Newton method

[Nocedal 1980, Liu-Nocedal 1989]

Instead of the Newton update

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{H}_t^{-1} \mathbf{g}_t$$

Perform a *quasi-Newton* update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{\eta}_t \mathbf{K}_t \mathbf{g}_t$$

where: K_t is a low-rank approximation of H_t^{-1} η_t is obtained by line search

LBFGS = a quasi-Newton method

[Nocedal 1980, Liu-Nocedal 1989]

Instead of the Newton update

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{H}_t^{-1} \mathbf{g}_t$$

Perform a *quasi-Newton* update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{\eta}_t \mathbf{K}_t \mathbf{g}_t$$

where: K_t is a low-rank approximation of H_t^{-1} η_t is obtained by line search

- rank m specified by user (default m=15)
- instead of storage d², only storage 2dm required (update of K_t also has running time O(dm) per iteration)

Line search in LBFGS

[Nocedal 1980, Liu-Nocedal 1989]

Update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \mathbf{K}_t \mathbf{g}_t$$

- direction determined by K_tg_t
- step size η_t must satisfy **Wolfe conditions**

change in w

$$\Delta \mathbf{w} = \mathbf{w}_{t+1} - \mathbf{w}_t$$

change in w

$$\Delta \mathbf{w} = \mathbf{w}_{t+1} - \mathbf{w}_t$$

$$f(\mathbf{w}_{t+1}) \le f(\mathbf{w}_t) + \alpha \mathbf{g}_t^{\mathsf{T}} \Delta \mathbf{w}$$
 for some α in $(0,0.5)$

$$\Delta \mathbf{w} = \mathbf{w}_{t+1} - \mathbf{w}_t$$

$$f(\mathbf{w}_{t+1}) \le f(\mathbf{w}_t) + \alpha \mathbf{g}_t^{\mathsf{T}} \Delta \mathbf{w}$$
 for some α in $(0,0.5)$

Rewrite as

$$\Delta f \leq \alpha \mathbf{g}_t^{\mathsf{T}} \Delta \mathbf{w}$$

where
$$\Delta f = f(\mathbf{w}_{t+1}) - f(\mathbf{w}_t)$$

1st Wolfe condition:

$$f(\mathbf{w}_{t+1}) \le f(\mathbf{w}_t) + \alpha \mathbf{g}_t^{\mathsf{T}} \Delta \mathbf{w}$$
 for some α in $(0,0.5)$

Rewrite as

$$\Delta f \leq \alpha \mathbf{g}_t^\mathsf{T} \Delta \mathbf{w}$$

where
$$\Delta f = f(\mathbf{w}_{t+1}) - f(\mathbf{w}_t)$$

Equivalent to:
$$\alpha \leq \frac{\Delta f}{\mathbf{g}_t^T \Delta \mathbf{w}}$$
 (because $\mathbf{g}_t^T \Delta \mathbf{w}$ is negative)

We use notation wolfe1 = $\frac{\Delta f}{\mathbf{g}_t^T \Delta \mathbf{w}}$ for the ratio on the rhs.

2nd Wolfe condition (strengthened):

2nd Wolfe condition (strengthened):

$$\left|\mathbf{g}_{t+1}^{\mathsf{T}}\Delta\mathbf{w}\right| \leq \beta \mathbf{g}_{t}^{\mathsf{T}}\Delta\mathbf{w}$$
 for some β in $(\alpha, 1)$

2nd Wolfe condition (strengthened):

$$\begin{vmatrix} \mathbf{g}_{t+1}^{\mathsf{T}} \Delta \mathbf{w} \end{vmatrix} \leq \beta \mathbf{g}_{t}^{\mathsf{T}} \Delta \mathbf{w} \qquad \text{for some } \beta \text{ in } (\alpha, 1)$$

$$\text{Rewrite as } \beta \geq \begin{vmatrix} \mathbf{g}_{t+1}^{\mathsf{T}} \Delta \mathbf{w} \\ \mathbf{g}_{t}^{\mathsf{T}} \Delta \mathbf{w} \end{vmatrix}.$$

We use notation wolfe2 =
$$\frac{\mathbf{g}_{t+1}^{\mathsf{T}} \Delta \mathbf{w}}{\mathbf{g}_{t}^{\mathsf{T}} \Delta \mathbf{w}}$$
 for the ratio on the rhs.

Summarizing Wolfe conditions

Let wolfe1 =
$$\frac{\Delta f}{\mathbf{g}_t^T \Delta \mathbf{w}}$$
 and wolfe2 = $\frac{\mathbf{g}_{t+1}^T \Delta \mathbf{w}}{\mathbf{g}_t^T \Delta \mathbf{w}}$.

Let $0 < \alpha < 0.5$, $\alpha < \beta < 1$.

- i) wolfe1 $\geq \alpha$
- ii) $|\text{wolfe2}| \leq \beta$

In VW, the Wolfe conditions are not enforced

- ratios wolfe1 and wolfe2 are logged
- it is always possible to choose α and β in the hindsight as long as:

wolfe1>0 and -1<wolfe2<1

Line search and termination in VW

- in the first iteration:
 - evaluate directional 2nd derivative and initialize step size according to the one-dimensional Newton step
 - if the loss does not decrease (i.e., wolfe1<0), shrink the step
- in the subsequent iterations:
 - set step size to 1.0
 - if the loss does not decrease (i.e., wolfe1<0), shrink the step
- terminate if
 - either: the specified number of passes over the data is reached
 - or: the relative decrease in the objective $f(\mathbf{w})$ falls below a threshold

LBFGS switches

- --bfgs turn on LBFGS optimization
- --|2 0.0 L2 regularization coefficient
- --mem 15 rank of the inverse Hessian approximation
- --termination 0.001
 termination threshold for the relative loss decrease