Batch optimization
in VW via LBFGS

Miroslav Dudik
12/16/2011

Outline

« gradient descent and Newton method
e LBFGS
e LBFGS Iin VW

Smooth convex
unconstrained optimization

Goal: min f(w)
weRd

where f is strongly convex
and twice continuously differentiable

Smooth convex
unconstrained optimization

Goal: min f(w)
weR?

where f is strongly convex
and twice continuously differentiable

Our objective:
flw) =", loss(w;x;, y) + 5 lwl|?

e possibly weighted loss
 regularization can have coordinate-specific scaling
(specified by user)

Warm-up: Gradient descent

* Initialize w,
o fort=1,2,...:
move in the direction of the steepest descent
Wti1 = Wt — NVf(wt)

Warm-up: Gradient descent

Gradient descent update:
Wti1 = Wt — NVf(wt)

Warm-up: Gradient descent

gradient

gt = Vf(wt)

Gradient descent update:
Wti1 = Wt — NVf(wt)

Equivalently:
e approximate
fOw) ~ F(We) + 9] (We — W) + 55 [[we — wl|?

Warm-up: Gradient descent

gradient

gt = Vf(wt)

Gradient descent update:
Wti1 = Wt — NVf(wt)

Equivalently:

e approximate
fOw) ~ F(We) + 9] (We — W) + 55 [[we — wl|?

« optimize approximation:

W41 = argmin (f(Wt) + 9] (We — W) + 55 [lwe - WIIZ)

Warm-up: Gradient descent

gradient

gt = Vf(wt)

Gradient descent update:
Wti1 = Wt — NVf(wt)

Equivalently:
e approximate
fOw) ~ F(We) + 9] (We — W) + 55 [[we — wl|?

« optimize approximation:

W41 = argmin (f(Wt) + 9] (We — W) + 55 [lwe - WIIZ)

Newton method

Better approximation

Hessian

H: = V2f(w¢)

e

f(w) ~ f(we) + gl (We — w) + 3(we — W) He(we — w)

Update:
Wil =we—H; gt

Newton method

Better approximation

Hesslan

H: = V2f(w¢)

e

f(w) ~ f(we) + gl (We — w) + 3(we — W) He(we — w)

Update:

Problem: Hessian can be too big (matrix of size dxd

LBFGS = a quasi-Newton method
[Nocedal 1980, Liu-Nocedal 1989]

Instead of the Newton update
Wil = Wt — Ht_lgt

Perform a quasi-Newton update:

Wil = Wt — Nt Kegt

where: K: is a low-rank approximation of HtT1
N+ is obtained by line search

LBFGS = a quasi-Newton method
[Nocedal 1980, Liu-Nocedal 1989]

Instead of the Newton update
Wil = Wt — Ht_lgt

Perform a quasi-Newton update:
Wt+1 = Wt — NtKigt

where: K: is a low-rank approximation of HtT1
N+ is obtained by line search

« rank m specified by user (default m=15)

- instead of storage d?, only storage 2dm required
(update of K, also has running time O(dm) per iteration)

Line search in LBFGS
[Nocedal 1980, Liu-Nocedal 1989]

Update:
Wil = Wt — Nt Kegt
« direction determined by K,g,

- step size n; must satisfy Wolfe conditions

1st Wolfe condition:

1st Wolfe condition:

1st Wolfe condition:

change in w

AW = W¢ii1] — Wt

1st Wolfe condition:

change in w

AW = W¢ii1] — Wt

1st Wolfe condition:

f(wer1) < f(we) + orgIAw for some a in (0,0.5)

change in w

AW = Wiyl — Wt

1st Wolfe condition:
f(wer1) < f(we) + orgIAw for some ain (0,0.5)

Rewrite as
T
Af < ag, Aw

where Af =f(w¢i1) —f(wt)

1st Wolfe condition:
f(Wir1) < f(we) + orgTAw for some ain (0,0.5)

Rewrite as
Af < aglAw

where Af =f(w¢i1) —f(wt)

Equivalentto: o < TAf

g; Aw
(because g, TAw is negative)

We use notation wolfel = gTAgw for the ratio on the rhs.
t

2"d Wolfe condition (strengthened):

2"d Wolfe condition (strengthened):

)ngAw‘ < Bg] Aw for some Bin (a,1)

2"d Wolfe condition (strengthened):

)ngAw‘ < ,BgIAw for some B in (a,1)

T

A

Rewrite as 8 > |l

g;Aw

. 9, 1AW .
We use notation wolfe2 = ;#ZW for the ratio on the rhs.
t

Summarizing Wolfe conditions

gjt_+ 1AW

Let wolfel = —— and wolfe2 = — .
g Aw g;Aw

Let 0<a<0.5, a<B<1.
1) wolfel=a
i) |wolfe2| <

In VW, the Wolfe conditions are not enforced

« ratios wolfel and wolfe2 are logged
« itis always possible to choose a and 8 in the
hindsight as long as:
wolfe1>0 and -1<wolfe2<1

Line search and termination in VW

* in the first iteration:

— evaluate directional 2"d derivative and initialize step size
according to the one-dimensional Newton step

— if the loss does not decrease (i.e., wolfe1<0), shrink the step
* in the subsequent iterations:

— set step size to 1.0

— if the loss does not decrease (i.e., wolfe1<0), shrink the step
« terminate if

either: the specified number of passes over the data is reached

or: the relative decrease in the objective f(w)
falls below a threshold

LBFGS switches

--bfgs
turn on LBFGS optimization

--12 0.0
L2 regularization coefficient

--mem 15
rank of the inverse Hessian approximation

--termination 0.001
termination threshold for the

relative loss decrease

