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git://github.com/JohnLangford/vowpal_wabbit.git



What is Vowpal Wabbit

1. Large Scale linear regression (*)

2. Online Learning (*)
3. Active Learning (*)
4. Learning Reduction (*)
5. Contextual Bandit Learning
6. Logarithmic Time Classification
7. Joint Prediction

(*) Previous Tutorials online
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Community
1. BSD license.

2. Mailing list >500, Github >1K forks, >1K,
>1K issues, >100 contributors

3. The official strawman for large scale logistic
regression @ NIPS :-)
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Surface details

1. Automated test suite, github repository.

2. VW supports all I/O modes: executable, library,
port, daemon, service (see next).

3. VW has a reasonable++ input format: sparse,
dense, namespaces, etc... + JSON format

4. Mostly C++, but bindings in other languages of
varying maturity (python, C#, Java good).

5. A substantial user base + developer base.
Thanks to many who have helped.
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An example

wget http://hunch.net/~jl/VW_raw.tar.gz

vw -c rcv1.train.raw.txt -b 22 --ngram 2
--skips 4 -l 0.25 --binary provides stellar
performance in 12 seconds.

http://hunch.net/~jl/VW_raw.tar.gz


Next

1. Contextual Bandit Learning (John Langford)
2. Logarithmic Time Classification (Paul Mineiro)
3. Joint Prediction (Kai-Wei Chang)



Suppose you want to make decisions

Repeatedly:

1. A user comes to Microsoft (with history of previous
visits, IP address, data related to an account)

2. Microsoft chooses information to present (urls, ads, news
stories)

3. The user reacts to the presented information (clicks on
something, clicks, comes back and clicks again,...)

Microsoft wants to interactively choose content and use the
observed feedback to improve future content choices.



The Contextual Bandit Setting

For t = 1, . . . ,T :

1. The world produces some context x ∈ X

2. The learner chooses an action a ∈ A

3. The world reacts with reward ra ∈ [0, 1]

Goal: Learn a good policy for choosing actions
given context.



How do you test things?

Use format:
action:cost:probability | features
Example:
1:1:0.5 | tuesday year million short compan vehicl line
stat financ commit exchang plan corp subsid credit
issu debt pay gold bureau prelimin refin billion
telephon time draw basic relat file spokesm reut secur
acquir form prospect period interview regist toront
resourc barrick ontario qualif bln prospectus
convertibl vinc borg arequip
...



How do you train?

Training a deterministic policy

vw –cb 2 –cb_type dr rcv1.train.txt.gz -c
vw –cb 2 –cb_type ips rcv1.train.txt.gz -c
Training an exploration policy

vw –cb_explore 2 –epsilon 0.2 rcv1.train.txt -c
vw –cb_explore –cover 1 rcv1.train.txt -c
vw –cb_explore –bag 5 rcv1.train.txt -c
Datasets with Action Dependent Features (adf)
work. Use –cb_adf or –cb_explore_adf
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How do you evaluate exploration
algorithms?

Method 1: With a supervised multiclass dataset
vw –cbify 2 –epsilon 0.2 rcv1.train.multiclass -c
vw –cbify 2 –cover 1 rcv1.train.multiclass -c
vw –cbify 2 –bag 5 rcv1.train.multiclass -c

Method 2: With a CB dataset
vw –explore_eval –multiplier 0.1 –epsilon 0.2
rcv1.train.multiclass_adf -c
–multiplier: smaller value means less bias (towards
data collection policy) but higher variance.
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Consider the decision service

http://aka.ms/mwt
Deploy a decision service system using VW in your
Azure account.
Two apis: GetAction() and ReportReward().
Talk via JSON or use a client library.

http://aka.ms/mwt

