Vowpal Wabbit 2016

Kai-Wei Chang, Paul Mineiro, John Langford http://hunch.net/~vw/

git clone git://github.com/JohnLangford/vowpal_wabbit.git

1. Large Scale linear regression (*)

- 1. Large Scale linear regression (*)
- 2. Online Learning (*)

- 1. Large Scale linear regression (*)
- 2. Online Learning (*)
- 3. Active Learning (*)

- 1. Large Scale linear regression (*)
- 2. Online Learning (*)
- 3. Active Learning (*)
- 4. Learning Reduction (*)

- 1. Large Scale linear regression (*)
- 2. Online Learning (*)
- 3. Active Learning (*)
- 4. Learning Reduction (*)
- 5. Contextual Bandit Learning

- 1. Large Scale linear regression (*)
- 2. Online Learning (*)
- 3. Active Learning (*)
- 4. Learning Reduction (*)
- 5. Contextual Bandit Learning
- 6. Logarithmic Time Classification

- 1. Large Scale linear regression (*)
- 2. Online Learning (*)
- 3. Active Learning (*)
- 4. Learning Reduction (*)
- 5. Contextual Bandit Learning
- 6. Logarithmic Time Classification
- 7. Joint Prediction
- (*) Previous Tutorials online

1. BSD license.

- 1. BSD license.
- 2. Mailing list >500, Github >1K forks, >1K, >1K issues, >100 contributors

- 1. BSD license.
- 2. Mailing list >500, Github >1K forks, >1K, >1K issues, >100 contributors
- 3. The official strawman for large scale logistic regression @ NIPS :-)

- 1. BSD license
- 2. Mailing list >500, Github >1K forks, >1K, >1K issues, >100 contributors
- 3. The official strawman for large scale logistic regression @ NIPS :-)

4.

1. Automated test suite, github repository.

- 1. Automated test suite, github repository.
- 2. VW supports all I/O modes: executable, library, port, daemon, service (see next).

- 1. Automated test suite, github repository.
- 2. VW supports all I/O modes: executable, library, port, daemon, service (see next).
- 3. VW has a reasonable++ input format: sparse, dense, namespaces, etc... + JSON format

- 1. Automated test suite, github repository.
- 2. VW supports all I/O modes: executable, library, port, daemon, service (see next).
- 3. VW has a reasonable++ input format: sparse, dense, namespaces, etc... + JSON format
- 4. Mostly C++, but bindings in other languages of varying maturity (python, C#, Java good).

- 1. Automated test suite, github repository.
- 2. VW supports all I/O modes: executable, library, port, daemon, service (see next).
- 3. VW has a reasonable++ input format: sparse, dense, namespaces, etc... + JSON format
- 4. Mostly C++, but bindings in other languages of varying maturity (python, C#, Java good).
- 5. A substantial user base + developer base. Thanks to many who have helped.

An example

```
wget http://hunch.net/~jl/VW_raw.tar.gz
```

vw -c rcv1.train.raw.txt -b 22 --ngram 2 --skips 4 -1 0.25 --binary provides stellar performance in 12 seconds.

Next

- 1. Contextual Bandit Learning (John Langford)
- 2. Logarithmic Time Classification (Paul Mineiro)
- 3. Joint Prediction (Kai-Wei Chang)

Suppose you want to make decisions

Repeatedly:

- 1. A user comes to Microsoft (with history of previous visits, IP address, data related to an account)
- 2. Microsoft chooses information to present (urls, ads, news stories)
- 3. The user reacts to the presented information (clicks on something, clicks, comes back and clicks again,...)

Microsoft wants to interactively choose content and use the

The Contextual Bandit Setting

For
$$t = 1, ..., T$$
:

- 1. The world produces some context $x \in X$
- 2. The learner chooses an action $a \in A$
- 3. The world reacts with reward $r_a \in [0, 1]$

Goal: Learn a good policy for choosing actions given context.

How do you test things?

Use format:

action:cost:probability | features

Example:

1:1:0.5 | tuesday year million short compan vehicl line stat financ commit exchang plan corp subsid credit issu debt pay gold bureau prelimin refin billion telephon time draw basic relat file spokesm reut secur acquir form prospect period interview regist toront resourc barrick ontario qualif bln prospectus convertibl vinc borg arequip

. . .

Training a deterministic policy

Training a deterministic policy vw -cb 2 -cb_type dr rcv1.train.txt.gz -c vw -cb 2 -cb_type ips rcv1.train.txt.gz -c

```
Training a deterministic policy
vw -cb 2 -cb_type dr rcv1.train.txt.gz -c
vw -cb 2 -cb_type ips rcv1.train.txt.gz -c
Training an exploration policy
vw -cb_explore 2 -epsilon 0.2 rcv1.train.txt -c
vw -cb_explore -cover 1 rcv1.train.txt -c
vw -cb_explore -bag 5 rcv1.train.txt -c
```

```
Training a deterministic policy
vw -cb 2 -cb type dr rcv1.train.txt.gz -c
vw -cb 2 -cb type ips rcv1.train.txt.gz -c
 Training an exploration policy
vw -cb explore 2 -epsilon 0.2 rcv1.train.txt -c
vw -cb explore -cover 1 rcv1.train.txt -c
vw -cb explore -bag 5 rcv1.train.txt -c
 Datasets with Action Dependent Features (adf)
 work. Use -cb adf or -cb explore adf
```

How do you evaluate exploration algorithms?

```
Method 1: With a supervised multiclass dataset vw –cbify 2 –epsilon 0.2 rcv1.train.multiclass -c vw –cbify 2 –cover 1 rcv1.train.multiclass -c vw –cbify 2 –bag 5 rcv1.train.multiclass -c
```

How do you evaluate exploration algorithms?

```
Method 1: With a supervised multiclass dataset
vw -cbify 2 -epsilon 0.2 rcv1.train.multiclass -c
vw -cbify 2 -cover 1 rcv1.train.multiclass -c
vw -cbify 2 -bag 5 rcv1.train.multiclass -c
 Method 2: With a CB dataset
vw -explore eval -multiplier 0.1 -epsilon 0.2
 rcv1.train.multiclass adf -c
 -multiplier: smaller value means less bias (towards
 data collection policy) but higher variance.
```

Consider the decision service

http://aka.ms/mwt

Deploy a decision service system using VW in your Azure account.

Two apis: GetAction() and ReportReward().

Talk via JSON or use a client library.