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Online Kernel SVM

Implemented the LASVM algorithm of Bordes et al. (2005)

Similar to their paper, but without the bias term

Variant of Dual Coordinate Ascent

Given a dual variable, fully minimize with respect to it

No bias term means this can be done in closed form
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LASVM

Consists of two steps

Process step: Take a new example, update its dual variable

Reprocess step: Take an existing support vector, update its dual
variable

Reprocess heuristics:

Can pick a random support vector
Easy to maintain suboptimality estimates of each SV, pick greedily
Usually best to pick at least one greedy and one random

Online algorithm: Receive new example, perform process and then
reprocess a fixed number of times
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Convergence properties

Guaranteed to converge to batch solution with enough reprocess steps
and multiple passes over data

Typically works quite well in just one pass and 1-2 reprocess steps

Can use active learning for faster convergence
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Other implementation details

Maximum change in one update capped at 1 for stability

Cache of kernel evaluations for efficiency, maxcache parameter set to
230
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Command line flags

Enabled by --ksvm option to VW

Number of reprocess steps through --reprocess (default 1)

Kernel type through --kernel. Supported types:

Linear: specified as --kernel linear

Polynomial: specified as --kernel poly. Additionally takes --degree

d (default 2)
RBF: specified as --kernel rbf. Additionally takes --bandwidth b

(default 1.0)

Do not forget to specify regularization through --l2
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