Matt Hoffman, Columbia Dept. of Statistics John Langford, Yahoo! Research # LDA (Blei et al. 2003) in a tiny nutshell - Latent Dirichlet Allocation (LDA) is a hierarchical Bayesian model that explains the variation in a set of documents in terms of a set of K latent "topics," i.e., distributions over the vocabulary - Each document is assumed to be a mixture of these topics - Words are drawn by: - Choosing a topic z per-doc mixture weights - Sampling from that topic z #### topic 0: | game |
0.2027 | |---------|------------| | games |
0.1311 | | play | 0.0525 | | ball |
0.0361 | | score |
0.0305 | | points |
0.0256 | | rules |
0.0224 | | first |
0.0213 | | lead |
0.0211 | | played |
0.0188 | | goal |
0.0186 | | card | 0.0173 | | ninutes | 0.0163 | | | | #### topic 1: | born |
0.0975 | |-----------|------------| | career |
0.0441 | | died |
0.0312 | | worked |
0.0287 | | served |
0.0273 | | director |
0.0209 | | member |
0.0176 | | years |
0.0167 | | december |
0.0164 | | joined |
0.0162 | | college |
0.0157 | | january |
0.0147 | | niversity | 0.0145 | | | | #### topic 2: | university |
0.1471 | |------------|------------| | college | 0.0584 | | research |
0.0412 | | professor |
0.0347 | | science |
0.0259 | | studies |
0.0229 | | education |
0.0226 | | degree |
0.0210 | | department |
0.0141 | | study |
0.0136 | | academy | 0.0125 | | sciences | 0.0123 | | | | #### topic 3: | stage |
0.2467 | |--------|------------| | page |
0.1115 | | stages |
0.0631 | | murray |
0.0603 | | mask |
0.0528 | | shadow |
0.0365 | | hearts |
0.0320 | | finger |
0.0295 | | suit |
0.0280 | | min |
0.0227 | | burn |
0.0215 | | arrow |
0.0206 | | bow |
0.0201 | | | | #### topic 4: |
0.0462 | |------------| |
0.0392 | |
0.0391 | |
0.0363 | |
0.0194 | |
0.0185 | | 0.0179 | |
0.0171 | |
0.0165 | |
0.0161 | |
0.0152 | | 0.0143 | |
0.0143 | | | #### topic 5: |
0.0198 | |------------| |
0.0166 | | 0.0132 | | 0.0125 | | 0.0125 | |
0.0125 | |
0.0116 | |
0.0114 | |
0.0113 | |
0.0113 | |
0.0113 | |
0.0108 | | | topic 6: |
0.1872 | |------------| |
0.1705 | |
0.1066 | |
0.0865 | |
0.0655 | |
0.0399 | |
0.0394 | |
0.0369 | | 0.0339 | |
0.0245 | |
0.0239 | |
0.0194 | | 0.0188 | |
0.0165 | | | # Online VB for LDA (Hoffman et al., NIPS 2010) - Until converged: - Choose a mini-batch of documents randomly - For each document in that mini-batch - Estimate approximate posterior over what topics each word in each document came from - (Partially) update approximate posterior over topic distributions based on what words are believed to have come from what topics #### To learn a set of topics: ``` ./vw wiki.dat --Ida 10 --Ida_alpha 0.1 --Ida_rho 0.1 --Ida_D 75963 --minibatch 256 --power_t 0.5 --initial_t 1 -b 16 --cache_file /tmp/vw.cache --passes 2 -p predictions.dat --readable model topics.dat ``` ./vw wiki.dat: Analyze word counts in wiki.dat --Ida 10: Use 10 topics #### Hyperparameters: - --Ida_alpha 0.1: $\theta_d \sim \text{Dirichlet}(\alpha)$ - --Ida_rho 0.1: $\beta_k \sim \text{Dirichlet}(\rho)$ - # of documents - --Ida_D 75963: We'll analyze a total of 75963 unique documents #### Learning parameters: - --minibatch 256: Analyze 256 docs at a time - --power_t 0.5, --initial_t 1: Stepsize schedule $\eta_t = (initial_t + t)^{-power_t}$ -b 16: We expect to see at most 2¹⁶ unique words To run multiple passes through the dataset: - --cache_file /tmp/vw.cache: Where to cache parsed word counts - --passes 2: Number of times to go over the dataset -p predictions.dat: File to print out the inferred perdocument topic weights to --readable_model topics.dat: We print out the topics in human-readable format to topics.dat ### Data Format No labels, no namespace ``` | word_id:word_ct word_id:word_ct word_id:word_ct word_id:word_ct ... | word_id:word_ct word_id:word_ct word_id:word_ct word_id:word_ct ... | word_id:word_ct ... ``` ## Output Predictions Format Each line corresponds to a document d Each column corresponds to a topic k ``` Y1,1 Y1,2 Y1,k Y1,K 1 Y2,1 Y2,2 Y2,k Y2,K 1 Yd,1 Yd,2 Yd,k Yd,K 1 ``` ## Output Topics Format Each line corresponds to a topic k Each column corresponds to a word w ``` \lambda_{1,1} \lambda_{1,2} \dots \lambda_{1,k} \dots \lambda_{1,K} \lambda_{2,1} \lambda_{2,2} \dots \lambda_{2,k} \dots \lambda_{2,K} \lambda_{w,1} \lambda_{w,2} \dots \lambda_{w,k} \dots \lambda_{w,K} \lambda_{w,1} \lambda_{w,2} \dots \lambda_{w,k} \dots \lambda_{w,K} ``` #### To learn a set of topics: ``` ./vw wiki.dat --Ida 10 --Ida_alpha 0.1 --Ida_rho 0.1 --Ida_D 75963 --minibatch 256 --power_t 0.5 --initial_t 1 -b 16 --cache_file /tmp/vw.cache --passes 2 -p predictions.dat --readable model topics.dat ```