Matt Hoffman, Columbia Dept. of Statistics John Langford, Yahoo! Research

LDA (Blei et al. 2003) in a tiny nutshell

- Latent Dirichlet Allocation (LDA) is a hierarchical Bayesian model that explains the variation in a set of documents in terms of a set of K latent "topics," i.e., distributions over the vocabulary
- Each document is assumed to be a mixture of these topics
- Words are drawn by:
 - Choosing a topic z per-doc mixture weights
 - Sampling from that topic z

topic 0:

game	 0.2027
games	 0.1311
play	0.0525
ball	 0.0361
score	 0.0305
points	 0.0256
rules	 0.0224
first	 0.0213
lead	 0.0211
played	 0.0188
goal	 0.0186
card	0.0173
ninutes	0.0163

topic 1:

born	 0.0975
career	 0.0441
died	 0.0312
worked	 0.0287
served	 0.0273
director	 0.0209
member	 0.0176
years	 0.0167
december	 0.0164
joined	 0.0162
college	 0.0157
january	 0.0147
niversity	0.0145

topic 2:

university	 0.1471
college	0.0584
research	 0.0412
professor	 0.0347
science	 0.0259
studies	 0.0229
education	 0.0226
degree	 0.0210
department	 0.0141
study	 0.0136
academy	0.0125
sciences	0.0123

topic 3:

stage	 0.2467
page	 0.1115
stages	 0.0631
murray	 0.0603
mask	 0.0528
shadow	 0.0365
hearts	 0.0320
finger	 0.0295
suit	 0.0280
min	 0.0227
burn	 0.0215
arrow	 0.0206
bow	 0.0201

topic 4:

 0.0462
 0.0392
 0.0391
 0.0363
 0.0194
 0.0185
0.0179
 0.0171
 0.0165
 0.0161
 0.0152
0.0143
 0.0143

topic 5:

 0.0198
 0.0166
0.0132
0.0125
0.0125
 0.0125
 0.0116
 0.0114
 0.0113
 0.0113
 0.0113
 0.0108

topic 6:

 0.1872
 0.1705
 0.1066
 0.0865
 0.0655
 0.0399
 0.0394
 0.0369
0.0339
 0.0245
 0.0239
 0.0194
0.0188
 0.0165

Online VB for LDA (Hoffman et al., NIPS 2010)

- Until converged:
 - Choose a mini-batch of documents randomly
 - For each document in that mini-batch
 - Estimate approximate posterior over what topics each word in each document came from
 - (Partially) update approximate posterior over topic distributions based on what words are believed to have come from what topics

To learn a set of topics:

```
./vw wiki.dat --Ida 10
--Ida_alpha 0.1 --Ida_rho 0.1 --Ida_D 75963
--minibatch 256 --power_t 0.5 --initial_t 1
-b 16
--cache_file /tmp/vw.cache --passes 2
-p predictions.dat
--readable model topics.dat
```

./vw wiki.dat: Analyze word counts in wiki.dat

--Ida 10: Use 10 topics

Hyperparameters:

- --Ida_alpha 0.1: $\theta_d \sim \text{Dirichlet}(\alpha)$
- --Ida_rho 0.1: $\beta_k \sim \text{Dirichlet}(\rho)$
- # of documents
 - --Ida_D 75963: We'll analyze a total of 75963 unique documents

Learning parameters:

- --minibatch 256: Analyze 256 docs at a time
- --power_t 0.5, --initial_t 1: Stepsize schedule $\eta_t = (initial_t + t)^{-power_t}$

-b 16: We expect to see at most 2¹⁶ unique words

To run multiple passes through the dataset:

- --cache_file /tmp/vw.cache: Where to cache parsed word counts
- --passes 2: Number of times to go over the dataset

-p predictions.dat: File to print out the inferred perdocument topic weights to

--readable_model topics.dat: We print out the topics in human-readable format to topics.dat

Data Format

No labels, no namespace

```
| word_id:word_ct word_id:word_ct word_id:word_ct word_id:word_ct ... | word_id:word_ct word_id:word_ct word_id:word_ct word_id:word_ct ... | word_id:word_ct ...
```

Output Predictions Format

Each line corresponds to a document d Each column corresponds to a topic k

```
Y1,1 Y1,2 .... Y1,k .... Y1,K 1
Y2,1 Y2,2 .... Y2,k .... Y2,K 1
....
Yd,1 Yd,2 .... Yd,k .... Yd,K 1
```

Output Topics Format

Each line corresponds to a topic k

Each column corresponds to a word w

```
\lambda_{1,1} \lambda_{1,2} \dots \lambda_{1,k} \dots \lambda_{1,K}
\lambda_{2,1} \lambda_{2,2} \dots \lambda_{2,k} \dots \lambda_{2,K}
\lambda_{w,1} \lambda_{w,2} \dots \lambda_{w,k} \dots \lambda_{w,K}
\lambda_{w,1} \lambda_{w,2} \dots \lambda_{w,k} \dots \lambda_{w,K}
```

To learn a set of topics:

```
./vw wiki.dat --Ida 10
--Ida_alpha 0.1 --Ida_rho 0.1 --Ida_D 75963
--minibatch 256 --power_t 0.5 --initial_t 1
-b 16
--cache_file /tmp/vw.cache --passes 2
-p predictions.dat
--readable model topics.dat
```