Vowpal Wabbit 5.0 il
http://hunch.net/~vw/

John Langford, Nikos Karampatziakis, Daniel Hsu,
Matt Hoffman

Yahoo! Research

git clone git://github.com/JohnLangford/vowpal_wabbit.git

Why VW?7

. T here should exist an open source online learning
system.

. Online learning = online optimization, which is or
competes with best practice for many learning al-
gorithms.

. VW is a multitrick pony, all useful, many orthogo-
nally composable. [hashing, caching, parallelizing,
feature crossing, features splitting, feature combin-
ing, etc...]

. It’s simple. No strange dependencies, currently only
6255 lines of code.

On RCV1, training time = ~3s [caching, pipelining]

On “large scale learning challenge” datasets < 10 min-
utes [caching]

[ICML 2009] 10°-way personalize spam filter. [-q, hash-
ing]

[UAI 2009] 10°-way conditional probability estimation.
library, hashing]

Rutgers grad] Gexample/day data feed. [—daemon]

[Matt Hoffman] LDA-100 on 2.5M Wikipedia in 1 hour.

[Paul Mineiro] True Love @ eHarmony

[Stock Investors] Unknown

The Tutorial Plan

1. John: Baseline & Conjugate Gradient.

2. Nikos: Importance Aware & Adaptive updates.

3. Daniel: Absurdly fast agnostic active learning.

4. Matt: Efficient Online LDA.

5. 154 minute break before the real workshop.

Ask Questions!

The basic learning algorithm (classic)

Start with Vi : w; = 0, Repeatedly:

1. Get example x € (00, 0)*.

2. Make prediction -3, w;x; clipped to interval [0, 1].

3. Learn truth y € [0, 1] with importance I or goto (1).

4. Update w; «— w; +n2(y — y)I and go to (1).

Input Format
Label [Importance] [Tag]|Namespace Feature ... [Names-

pace Feature \n

Namespace = String

Feature = String

Feature and Label are what you expect.
Importance is multiplier on learning rate.

Tag is an identifier for an example, echoed on example
output.

Namespace is a mechanism for feature manipulation
and grouping.

Valid input examples
1] 13 24 69
example _39|excuses the dog ate my homework
1 0.500000 example 39|excuses: the: dog ate

my homework |teacher male white Bagnell Al ate break-
fast

Example Input Options

[-d] [—data | <f> : Read examples from f. Multiple =
use all

cat <f> | vw : read from stdin
—daemon : read from port 39524
—port <p> : read from port p

—passes <n> : Number of passes over examples. Can't
Mmultipass a noncached stream.

-c [—cache] : Use a cache (or create one if it doesn’t
exist).

—cache_file <fc> : Use the fc cache file. Multiple =
use all. Missing = create. Multiple+missing = con-
catenate

—compressed <f>: Read a gzip compressed file.

Example Output Options
Default diagnostic information:

Progressive Validation, Example Count, Label, Predic-
tion, Feature Count

-p [—predictions | <po>: File to dump predictions into.

-r [—raw_predictions | <ro> : File to output unnormal-
ized prediction into.

—sendto <host[:port]> : Send examples to host:port.

—audit : Detailed information about feature_name: fea-
ture_index: feature_value: weight_value

—quiet : No default diagnostics

Example Manipulation Options
-t [—testonly | : Don't train, even if the label is there.

-q [—quadratic | <ab>: Cross every feature in names-
pace a* with every feature in namespace b*.

Example: -q et (= extra feature for every excuse fea-
ture and teacher feature)

—sort_features: Sort features for small cache files.

—ngram <N>: Generate N-grams on features. Incom-
patible with sort_features

—skips <S>: ...with S skips.

—hash all: hash even integer features.

Update Rule Options
—decay_learning _rate <d> [= 1]
—initial_t <i> [= 1]

—power_t <p> [= 0.5]
-| [—=learning_rate | <I> [= 0.1]

[dn—1;p
(i i)

Tle

Basic observation: there exists no one learning rate
satisfying all uses.

Example: state tracking vs. online optimization.

—loss_function {squared,log,hinge,quantile} Switch loss
function

Weight Options

-b [—bit_precision | [=18] : Number of weights.
Too many features in example set=- collisions occur.

-i [—initial_regressor | <ri> : Initial weight values. Mul-
tiple = average.

-f [—final_regressor | <rf> : File to store final weight
values in.

—random_weights <r>: make initial weights random.
Particularly useful with LDA.

—initial_weight <iw>: Initial weight value

Useful Parallelization Options

—thread-bits : Use 2% threads for multicore. Intro-
duces some nondeterminism (floating point add order).
Only useful with -q

—multisource : Assemble examples piecemeal from mul-
tiple sources. For cluster parallelism.

—predictto <host[:port]> : Send prediction to host:port.
Use with —multisource

Experimental Parallelization Options

—unique_id <i>: Identify nodes in a parallel environ-
ment.

—corrective: correct local update when global informa-
tion arrives.

—pbackprop: use backprop when global information ar-
rives.

—global_multiplier <m>: multiplier on backprop up-
dates.

—delayed_global: use delayed global updates.

Conjugate Gradient Options

—conjugate_gradient: Use batch mode preconditioned
conjugate gradient learning. 2 passes/update. Out-

put predictor compatible with base algorithm. Requires
more RAM. Uses cool trick:

921(2)

d"'Hd = 5 (z, d)?

—regularization <r>: Add r time the weight magnitude
to the optimization. Reasonable choice = 0.001.

“I have a better loss function”

1. Implement in loss_functions.cc.

2. Send a patch / github pull request.

“My online learning algorithm is better.”

. Copy {gd.cc, cg.cc, lda.cc, sender.cc, noop.cc} to
a new file and tweak.

. Add flag to parse_args.cc

. Implement flag in vw.cc

. Send a patch / github pull request.

Goals for Future Development

. Finish scaling up. I want a kilonode program.

. Native learning reductions. Just like more compli-
cated losses.

. Other learning algorithms, as interest dictates.

. Persistent Daemonization.

