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Motivation: Covertype Data Set

54 total features
Name Units

Elevation, Distance to X meters
Aspect, Slope degrees

Hillshade at time t “hillshade index” (0-255)
Wilderness Area {0, 1}4

Soil Type {0, 1}40
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The Geometry of Real Data

In practice, features often have different scales.

This is a problem for first-order online learning
methods.

Example: “vanilla” online GD regret:

R ≤
√
T ||w ∗||2 max

t∈1:T
||gt ||2

This can be made arbitrarily bad in only two
dimensions by scaling one of the dimensions while
leaving the other fixed. Not an artifact of the
analysis.
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Example

Generate data like this

x1 ∼ N(0, 1)

x2 ∼ N(0,
√
s)

z ∼ N(x1 +
1

s
x2, 1)

Do squared-loss prediction of z .

NB: x2 is statistically identical to x1 scaled by s.
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Example

Demo
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Summary of Demo

Un-normalized learning
I Lots of fiddling with learning rate.
I Slow convergence at extreme scales.

Normalized learning
I No fiddling with learning rate.
I Same convergence across different scales.

Paul Mineiro Normalized Online Learning Tutorial



On “Non-Demo” Datasets

Un-normalized learning
I Lots of fiddling with learning rate.
I Slow convergence at extreme scales.

Normalized learning
I No Less fiddling with learning rate.
I Same Similar convergence across different scales.
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How it Works (Mechanically)

Intuition: if feature i scaled by s, then j th

coordinate of w ∗ should be scaled by 1/s.

Ergo:

I Algorithm keeps track of maxs<t |x (s)i | for each j .
I When |x (t)i | > maxs<t |x (s)i |, rescale wi via

wi ← wi
maxs<t |x (s)i |

x
(t)
i

.
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How it Works (Mechanically) II

Intuition: learning rate parameter should control
average change in the prediction.

But: gradient is proportional to input size.
Ergo:

I Divide each ∂/∂i by maxs≤t |x (s)i |, and . . .
I Normalize the entire update by the average change in

prediction Nt/t, where

Nt = Nt−1 +
∑
i

(x
(t)
i )2

(maxs≤t |x (s)i |)2

I Intuition behind Nt : if this is an example with small xi ,
prediction is not changing very fast because gradient is
normalized by scale.
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When it fails

Algorithm normalizes by scale estimate derived from
history.

If the scale suddenly gets very large near the end of
the input sequence, the scale estimates have been
poor for most of the updates.

Theorems are driven by ∆i = maxt∈1:T |xti |
|x

ti
0
i
| .

Paul Mineiro Normalized Online Learning Tutorial



When it fails

Algorithm normalizes by scale estimate derived from
history.

If the scale suddenly gets very large near the end of
the input sequence, the scale estimates have been
poor for most of the updates.

Theorems are driven by ∆i = maxt∈1:T |xti |
|x

ti
0
i
| .

Paul Mineiro Normalized Online Learning Tutorial



When it fails

Algorithm normalizes by scale estimate derived from
history.

If the scale suddenly gets very large near the end of
the input sequence, the scale estimates have been
poor for most of the updates.

Theorems are driven by ∆i = maxt∈1:T |xti |
|x

ti
0
i
| .

Paul Mineiro Normalized Online Learning Tutorial



How to use

It is enabled by default in vw.

To not use:

--adaptive --invariant

. . . will you give vanilla AdaGrad without normalization.
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