Automatic Polynomial Expansions

What?

▶ vw can build polynomial decision surfaces:

$$x \mapsto 2 \cdot \mathbb{1}[x_1x_2 - 3x_1x_4x_5 + 7x_2x_4x_9 \ge 0] - 1.$$

What?

▶ vw can build polynomial decision surfaces:

$$x \mapsto 2 \cdot \mathbb{1}[x_1x_2 - 3x_1x_4x_5 + 7x_2x_4x_9 \ge 0] - 1.$$

▶ Just add --stage_poly to your command line.

▶ Polynomial features facilitate many problems (e.g., see kaggle forums).

▶ Polynomial features facilitate many problems (e.g., see kaggle forums).

▶ Polynomial features facilitate many problems (e.g., see kaggle forums).

▶ vw already had (manual) polynomials of low degree:

```
vw -q ff (..)
vw --cubic fff (..)
```

▶ Polynomial features facilitate many problems (e.g., see kaggle forums).

▶ vw already had (manual) polynomials of low degree:

```
vw -q ff (..)
vw --cubic fff (..)
```

▶ --stage_poly vs. --ksvm: different bias.

Does it work?

 ${\bf Theory.}\ \ {\bf Loss\ minimization\ guarantee}.$

Does it work?

Theory. Loss minimization guarantee.

Practice.

Does it work?

Theory. Loss minimization guarantee.

Practice.

More Info. NIPS 2014:

Scalable Nonlinear Learning with Adaptive Polynomial Expansions. Alekh Agarwal, Alina Beygelzimer, Daniel Hsu, John Langford, Matus Telgarsky.

--stage_poly

 $\verb|--stage_poly|$

 $--sched_exponent arg1$

 $\verb|--stage_poly|$

 $--sched_exponent arg1$

--batch_sz arg2

- $\verb|--stage_poly|$
- $--sched_exponent arg1$
- --batch_sz arg2
- --batch_sz_no_doubling

Hacking

▶ Different types of features.

Hacking

- ▶ Different types of features.
- ▶ Different support search.

More info @ github wiki & NIPS paper.

