Vowpal Wabbit 2017 Update

John Langford
http://hunch.net/~vw/

git clone
git://github.com/JohnLangford /vowpal _wabbit.git
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1. Large Scale linear regression (*)

2. Online Learning (*)

3. Active Learning (*)

4. Learning Reduction (*)

5. Sparse Models

6. Baseline (Alberto)

7. Optimized Exploration algorithms (Alberto)
8. Cost Sensitive Active Learning (Akshay)
9. Active Learning to Search (Hal)

10. Java Interface (Jon Morra)

11. JSON/Decision Service (Markus)

(*) Old stuff



1. BSD license.



1. BSD license.

2. Mailing list >500, Github >1K forks, >1K,
>1K issues, >100 contributors



1. BSD license.

2. Mailing list >500, Github >1K forks, >1K,
>1K issues, >100 contributors

amazon 00
% AOL®  Bai =k
”( il )
Graphlab ﬁ CONSULTING

B8 Microsoft y YAHOO! Tnaexc

3.

Im
®



Sparse Models

Scenario: You want to train a model with many
potential parameters but use little RAM at test time.
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Sparse Models

Scenario: You want to train a model with many
potential parameters but use little RAM at test time.
Step 1: vw -b 26 |1 le-7 <training set>

(memory footprint is 1GB)

Step 2: vw -t --sparse  weights <test set>

(memory footprint is 100MB)
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Alberto Bietti (Inria)
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Baseline

Setting: online regression

» Problem: range of targets (e.g. offset) is
unknown

» Bias term (weight for “constant” features) can
be slow to learn

» Hurts performance of learning / exploration
algorithms



Baseline

Setting: online regression

» Problem: range of targets (e.g. offset) is
unknown

» Bias term (weight for “constant” features) can
be slow to learn

» Hurts performance of learning / exploration
algorithms

Goal: adapt quickly and automatically to the range
of targets
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» From constant features on example --baseline
» Or separate global constant example --baseline
--global only
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Baseline

Solution:
» Learn baseline regressor separately from rest

» From constant features on example --baseline
» Or separate global constant example --baseline
--global only

» Residual regression on the other features

Note: learning rate multiplied by max label to
converge faster than other normalized updates



Contextual Bandits

Repeat:
e Get some context x

o Search query, user info, user’s interests

e Choose action a
o Advertisement
o News story
o Medical treatment
e Observe reward/loss r(a)
o Click/no click
o Revenue
o Treatment outcome

Goal: maximize cumulative reward

How? Balance exploration/exploitation
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Baseline: example for cb loss estimates

Reward/loss estimation is key (e.g. doubly robust)



Baseline: example for cb loss estimates

Reward/loss estimation is key (e.g. doubly robust)

> vw ds.txt --cbify 10 --cb_explore adf --cb_type dr --epsilon 0.05
0.682315

> vw ... —-loss0 9 --lossl 10

0.787594

> vw ... —-loss0 9 --lossl 10 --baseline

0.710636

> vw ... --loss0 9 --lossl 10 --baseline --global only
0.636140



Contextual bandits: bagging

Bagging: "bootstrapped Thompson sampling”
» Each update is performed Poisson(1) times

» For only one policy, greedy performs better
(always update once)



Contextual bandits: bagging

Bagging: "bootstrapped Thompson sampling”
» Each update is performed Poisson(1) times

» For only one policy, greedy performs better
(always update once)

» —bag n --greedify treats first policy like greedy
» Often works better, especially for small n



Contextual bandits: cover

Cover: maintains set of diverse policies good for
explore/exploit
» New parameterization: --cover n [--psi 0.01]
[--nounif]
» 1) controls diversity cost for training policies
(v = 0 — all ERM policies)
» ¢ = 1/VKt always
» —nounif disables exploration on ¢ actions (not
chosen by any policy)



Contextual bandits: miscellaneous

» Most changes are only in the ADF code
» —chify K --cb explore adf for using ADF code
in cbify
» —-loss0 [0] —loss1 [1] to specify different loss
encodings

» Cover + MTR uses MTR for the first (ERM)
policy, DR for the rest

» Upcoming: reduce uniform € exploration in
e-greedy using disagreement test (from active
learning)



