Vowpal Wabbit 2017 Update

John Langford

http://hunch.net/~vw/

git clone git://github.com/JohnLangford/vowpal_wabbit.git

- 1. Large Scale linear regression (*)
- 2. Online Learning (*)
- 3. Active Learning (*)
- 4. Learning Reduction (*)

- 1. Large Scale linear regression (*)
- 2. Online Learning (*)
- 3. Active Learning (*)
- 4. Learning Reduction (*)
- 5. Sparse Models

- 1. Large Scale linear regression (*)
- 2. Online Learning (*)
- 3. Active Learning (*)
- 4. Learning Reduction (*)
- 5. Sparse Models
- 6. Baseline (Alberto)

- 1. Large Scale linear regression (*)
- 2. Online Learning (*)
- 3. Active Learning (*)
- 4. Learning Reduction (*)
- 5. Sparse Models
- 6. Baseline (Alberto)
- 7. Optimized Exploration algorithms (Alberto)

- 1. Large Scale linear regression (*)
- 2. Online Learning (*)
- 3. Active Learning (*)
- 4. Learning Reduction (*)
- 5. Sparse Models
- 6. Baseline (Alberto)
- 7. Optimized Exploration algorithms (Alberto)
- 8. Cost Sensitive Active Learning (Akshay)

- 1. Large Scale linear regression (*)
- 2. Online Learning (*)
- 3. Active Learning (*)
- 4. Learning Reduction (*)
- 5. Sparse Models
- 6. Baseline (Alberto)
- 7. Optimized Exploration algorithms (Alberto)
- 8. Cost Sensitive Active Learning (Akshay)
- 9. Active Learning to Search (Hal)

- 1. Large Scale linear regression (*)
- 2. Online Learning (*)
- 3. Active Learning (*)
- 4. Learning Reduction (*)
- 5. Sparse Models
- 6. Baseline (Alberto)
- 7. Optimized Exploration algorithms (Alberto)
- 8. Cost Sensitive Active Learning (Akshay)
- 9. Active Learning to Search (Hal)
- 10. Java Interface (Jon Morra)

(*) Old stuff

- 1. Large Scale linear regression (*)
- 2. Online Learning (*)
- 3. Active Learning (*)
- 4. Learning Reduction (*)
- 5. Sparse Models
- 6. Baseline (Alberto)
- 7. Optimized Exploration algorithms (Alberto)
- 8. Cost Sensitive Active Learning (Akshay)
- 9. Active Learning to Search (Hal)
- 10. Java Interface (Jon Morra)
- 11. JSON/Decision Service (Markus)
- (*) Old stuff

Community

1. BSD license.

Community

- 1. BSD license.
- 2. Mailing list >500, Github >1K forks, >1K, >1K issues, >100 contributors

Community

- BSD license.
- 2. Mailing list >500, Github >1K forks, >1K, >1K issues, >100 contributors

3.

Sparse Models

Scenario: You want to train a model with many potential parameters but use little RAM at test time.

Sparse Models

```
Scenario: You want to train a model with many potential parameters but use little RAM at test time. Step 1: vw -b 26 --l1 1e-7 <training set> (memory footprint is 1GB)
```

Sparse Models

```
Scenario: You want to train a model with many potential parameters but use little RAM at test time. Step 1: vw -b 26 --l1 1e-7 <training set> (memory footprint is 1GB) Step 2: vw -t --sparse_weights <test set> (memory footprint is 100MB)
```

Baseline and Contextual Bandits

Alberto Bietti (Inria) alberto@bietti.me

Setting: online regression

- ► **Problem**: range of targets (e.g. offset) is unknown
- ▶ Bias term (weight for "constant" features) can be slow to learn
- Hurts performance of learning / exploration algorithms

Setting: online regression

- ► **Problem**: range of targets (e.g. offset) is unknown
- ▶ Bias term (weight for "constant" features) can be slow to learn
- Hurts performance of learning / exploration algorithms

Goal: adapt quickly and automatically to the range of targets

Solution:

- Learn baseline regressor separately from rest
 - From constant features on example --baseline
 - Or separate global constant example --baseline --global_only

Solution:

- Learn baseline regressor separately from rest
 - From constant features on example --baseline
 - Or separate global constant example --baseline --global only
- ▶ Residual regression on the other features

Solution:

- Learn baseline regressor separately from rest
 - From constant features on example --baseline
 - Or separate global constant example --baseline --global only
- Residual regression on the other features

Note: learning rate multiplied by max label to converge faster than other normalized updates

Contextual Bandits

Repeat:

- Get some context x
 - Search query, user info, user's interests
- Choose action a
 - Advertisement
 - News story
 - Medical treatment
- Observe reward/loss r(a)
 - Click/no click
 - Revenue
 - Treatment outcome

Goal: maximize cumulative reward

How? Balance exploration/exploitation

Baseline: example for cb loss estimates

Reward/loss estimation is key (e.g. doubly robust)

Baseline: example for cb loss estimates

Reward/loss estimation is key (e.g. doubly robust)

```
> vw ds.txt --cbify 10 --cb_explore_adf --cb_type dr --epsilon 0.05
0.682315
> vw ... --loss0 9 --loss1 10
0.787594
> vw ... --loss0 9 --loss1 10 --baseline
0.710636
> vw ... --loss0 9 --loss1 10 --baseline --global_only
0.636140
```

Contextual bandits: bagging

Bagging: "bootstrapped Thompson sampling"

- ▶ Each update is performed *Poisson*(1) times
- For only one policy, greedy performs better (always update once)

Contextual bandits: bagging

Bagging: "bootstrapped Thompson sampling"

- ▶ Each update is performed *Poisson*(1) times
- For only one policy, greedy performs better (always update once)
- ► --bag n --greedify treats first policy like greedy
- ightharpoonup Often works better, especially for small n

Contextual bandits: cover

Cover: maintains set of diverse policies good for explore/exploit

- New parameterization: --cover n [--psi 0.01] [--nounif]
 - ψ controls diversity cost for training policies ($\psi=0
 ightarrow {
 m all}$ ERM policies)
 - $\epsilon_t = 1/\sqrt{Kt}$ always
 - ▶ --nounif disables exploration on ϵ actions (not chosen by any policy)

Contextual bandits: miscellaneous

- Most changes are only in the ADF code
- --cbify K --cb_explore_adf for using ADF code in cbify
 - ► --loss0 [0] -loss1 [1] to specify different loss encodings
- Cover + MTR uses MTR for the first (ERM) policy, DR for the rest
- ▶ **Upcoming**: reduce uniform ϵ exploration in ϵ -greedy using disagreement test (from active learning)