Vowpal Wabbit 5.1

http://hunch.net/~vw/
John Langford
Yahoo! Research

{With help from Nikos Karampatziakis & Daniel
Hsu}

git clone
git://github.com/JohnLangford /vowpal wabbit.git

Why VW?

1. There should exist an open source online
learning system.

2. Online learning = online optimization, which is
or competes with best practice for many learning
algorithms.

3. VW is a multitrick pony, all useful, many
orthogonally composable. [hashing, caching,
parallelizing, feature crossing, features splitting,
feature combining, etc..]

4. It's simple. No strange dependencies, currently
only 6338 lines of code.

On RCV1, training time = ~3s [caching, pipelining]
On “large scale learning challenge™ datasets < 10
minutes [caching]

[ICML 2009] 10°-way personalize spam filter. [-q,
hashing]

[UAI 2009] 10°-way conditional probability
estimation. [library, hashing]

[Rutgers grad] Gexample/day data feed. [-daemon]
[Matt Hoffman] LDA-100 on 2.5M Wikipedia in 1
hour.

[Paul Mineiro] True Love @ eHarmony

[Stock Investors] Unknown

The Tutorial Plan

Baseline online linear algorithm
Common Questions.
Importance Aware Updates
Adaptive updates.

AN A

Conjugate Gradient.
6. Active Learning.

Missing: Online LDA: See Matt's slides
Ask Questions!

The basic learning algorithm (classic)

Start with Vi : w; = 0, Repeatedly:

1.
2.

Get example x € (o0, 00)*.

Make prediction § = > . wix; clipped to interval
[0, 1].

Learn truth y € [0, 1] with importance / or goto
(1).

Update w; «— w; +n2(y — 7)Ix; and go to (1).

Input Format

Label [Importance] [Tag||Namespace Feature ...
|INamespace Feature \n

Namespace = String

Feature = String

Feature and Label are what you expect.

Importance is multiplier on learning rate.

Tag is an identifier for an example, echoed on
example output.

Namespace is a mechanism for feature manipulation
and grouping.

Valid input examples

1113 24 69

example 39|excuses the dog ate my homework

1 0.500000 example 39|excuses: ' the: dog ate
my homework |teacher male white Bagnell Al ate
breakfast

Example Input Options

[-d] [—data | <f> : Read examples from f. Multiple
= use all

cat <f> | vw : read from stdin

—daemon : read from port 39524

—port <p> : read from port p

—passes <n> : Number of passes over examples.
Can't multipass a noncached stream.

-c [—cache] : Use a cache (or create one if it doesn't
exist).

—cache_file <fc> : Use the fc cache file. Multiple =
use all. Missing = create. Multiple+missing =
concatenate

—compressed <f>: Read a gzip compressed file.

Example Output Options

Default diagnostic information:

Progressive Validation, Example Count, Label,
Prediction, Feature Count

-p [—predictions | <po>: File to dump predictions
into.

-r [—raw__predictions | <ro> : File to output
unnormalized prediction into.

—sendto <host[:port]> : Send examples to host:port.
—audit : Detailed information about feature name:
feature index: feature value: weight value
—quiet : No default diagnostics

Example Manipulation Options

-t [—testonly | : Don't train, even if the label is there.
-q [—quadratic | <ab>: Cross every feature in
namespace a* with every feature in namespace b*.
Example: -q et (= extra feature for every excuse
feature and teacher feature)

—ignore <a>: Remove a namespace and all features
in it.

—sort features: Sort features for small cache files.
—ngram <N>: Generate N-grams on features.
Incompatible with sort features

—skips <S>: ...with S skips.

—hash all: hash even integer features.

Update Rule Options

—decay _learning_rate <d> [= 1]
—initial _t <i> [=1]

—power _t <p> [= 0.5]

- [—learning_rate | <I> [= 10]

fdn—1iP
TNle = 7= .
T+)

Basic observation: there exists no one learning rate
satisfying all uses.

Example: state tracking vs. online optimization.
—loss_function {squared,logistic,hinge,quantile}
Switch loss function

-b [=bit_ precision | [=18] : Number of
weights. Too many features in example set=
collisions occur.

-i [—initial _regressor | <ri> : Initial weight values.
Multiple = average.

-f [~final _regressor | <rf> : File to store final
weight values in.

—random _ weights <r>: make initial weights
random. Particularly useful with LDA.

—initial _weight <iw>: Initial weight value

Useful Parallelization Options

—~thread-bits : Use 2° threads for multicore.
Introduces some nondeterminism (floating point add
order). Only useful with -q

(There are other experimental cluster parallel
options.)

The Tutorial Plan

Baseline online linear algorithm
Common Questions.
Importance Aware Updates
Adaptive updates.

AN A

Conjugate Gradient.
6. Active Learning.

Missing: Online LDA: See Matt's slides
Ask Questions!

How do | choose good features?

Think like a physicist: Everything has units.

Let x; be the base unit. Output (w - x) has unit
“probability”, “median”, etc...

So predictor is a unit transformation machine.
The ideal w; has units of since doubling feature
value halves weight.
Update o 8L8WV£) ~ ALAW has units of x;.

Thus update = ; + x; unitwise, which doesn't make
sense.

Implications

1. Choose x; near 1, so units are less of an issue.

2. Choose x; on a similar scale to x; so unit
mismatch across features doesn't kill you.

3. Use other updates which fix the units problem
(later).

General advice:

1. Many people are happy with TFIDF = weighting
sparse features inverse to their occurrence rate.

2. Choose features for which a weight vector is easy
to reach as a combination of feature vectors.

How do | choose a Loss function?

Understand loss function semantics.

1. Minimizer of squared loss = conditional
expectation. f(x) = E[y|x] (default).

2. Minimizer of quantile = conditional quantile.
Pr(y > f(x)|x) =7

3. Hinge loss = tight upper bound on 0/1 loss.

4. Minimizer of logistic = conditional probability:
Pr(y = 1|x) = f(x). Particularly useful when
probabilities are small.

Hinge and logistic require labels in {—1,1}.

How do | choose a learning rate?

1. Are you trying to track a changing system?
—power _t 0 (forget past quickly).
2. If the world is adversarial: —power t 0.5

(default)
3. If the world is iid: —power t 1 (very aggressive)
4. If the error rate is small: -| <large>

5. If the error rate is large: - <small> (for
integration)

6. If —power t is too aggressive, setting —initial t
softens initial decay.

7. For multiple passes —decay learning rate in
[0.5,1] is sensible. values < 1 protect against
overfitting.

How do | order examples?

There are two choices:
1. Time order, if the world is nonstationary.
2. Permuted order, if not.

A bad choice: all label 0 examples before all label 1
examples.

How do | debug?

1. Is your progressive validation loss going down as
you train? (no => malordered examples or bad
choice of learning rate)

2. If you test on the train set, does it work? (no
=> something crazy)

3. Are the predictions sensible?

4. Do you see the right number of features coming
up?

How do | figure out which features are

important?

. Save state
. Create a super-example with all features

W N =

. Start with —audit option
4. Save printout.

(Seems whacky: but this works with hashing.)

How do | efficiently move/store data?

1. Use —noop and —cache to create cache files.

2. Use —cache multiple times to use multiple
caches and/or create a supercache.

3. Use —port and —sendto to ship data over the
network.

4. —compress generally saves space at the cost of
time.

How do | avoid recreating cachefiles as |

experiment?

1. Create cache with -b <large>, then experiment
with -b <small>.

2. Partition features intelligently across
namespaces and use —ignore <f>.

The Tutorial Plan

Baseline online linear algorithm
Common Questions.
Importance Aware Updates
Adaptive updates.

AN A

Conjugate Gradient.
6. Active Learning.

Missing: Online LDA: See Matt's slides
Ask Questions!

Examples with importance weights

The preceeding is not correct (use “—loss_function
classic” if you want it).

The update rule is actually importance invariant,
which helps substantially.

Principle

Having an example with importance weight h should
be equivalent to having the example h times in the
dataset.

(Karampatziakis & Langford,
http://arxiv.org/abs/1011.1576 for details.)

Learning with importance weights

Learning with importance weights

Learning with importance weights

Learning with importance weights

Learning with importance weights

Learning with importance weights

Learning with importance weights

Learning with importance weights

Learning with importance weights

What is ?

Take limit as update size goes to 0 but number of
updates goes to oc.

Take limit as update size goes to 0 but number of
updates goes to oc.
Surprise: simplifies to closed form.

[Loss [L(p,y) [Update s(h)
=
Squared (y — p)z P_Fy <1 _ e—hnx x)
x T x
hnx | x+yp+eVP T
Logistic log(1+ e~ YP) Wi(eTm* *TYP e-r)—hnx x—e'P o ye{-1,1}
yx ' x
Hinge max(0,1 — yp) —y min (hn7 1}”’) fory € {—1,1}
xTx
- : p— y—P
+-Quantile ify >p (y = p) ity >p rmin(hn, 255
ify<p 1="7)p—vy) ify<p (lff)min(hn,p;y_r)
@—m)xTx

+ many others worked out. Similar in effect to “implicit gradient”, but closed form.

Robust results for unweighted problems

standard

standard

astro - logistic loss spam - quantile loss
0.97 T T T T T T 0.98 T T T T T T T
0.96 0.97
0.95 0.96
0.95
°
0.94 E
2 0.94
0.93 -
093
0.92 0.92
0.91 0.91 7]
0.9 L 0.9 . . . N . . .
09 091 092 093 094 095 096 097 09 091 092 093 094 095 096 097 098
importance aware importance aware
revl - squared loss webspam - hinge loss
0.95 1
0.945 4 0.99
0.94 q 0.98
0.935 q 0.97
0.93 1 ° 09
s
0.925 1 2 0.95
s
0.92 q k7] 0.94
0.915 1 0.93
0.91 1 0.92
0.905 1 0.91
X . 09 b=
0.9 0.9050.910.9150.920.9250.930.9350.940.9450.95 0.9 091 0.92 093 0.94 0.95 0.96 0.97 0.98 0.99

importance aware importance aware

The Tutorial Plan

Baseline online linear algorithm
Common Questions.
Importance Aware Updates
Adaptive updates.

AN A

Conjugate Gradient.
6. Active Learning.

Missing: Online LDA: See Matt's slides
Ask Questions!

Adaptive Updates

» Adaptive, individual learning rates in VW.
» It's really gradient descent separately on each
coordinate / with

z 8€ W st}/s 2
5= 1 aWs:

» Coordinate-wise scaling of the data less of an
issue (units issue addressed) see (Duchi, Hazan,
and Singer / McMahan and Streeter, COLT
2010)

» Requires x2 RAM at learning time, but learned
regressor is compatible.

Some tricks involved

» Store sum of squared gradients w.r.t w; near w;.

» float InvSqrt(float x){

float xhalf = 0.5f * x;
int 1 = *(int*)&x;
1 OX5f3759d5 - (1> 1);
x = *(float*)&i;
x = x*(1.5f - xhalf*x*x);
return X;

}

Special SSE rsqrt instruction is a little better

» Raw Data

./vw --adaptive -b 24 --compressed -d tmp/spam_train.gz
average loss = 0.02878

./vw -b 24 --compressed -d tmp/spam_train.gz -1 100
average loss = 0.03267

» TFIDF scaled data

./vw --adaptive --compressed -d tmp/rcvi_train.gz -1 1
average loss = 0.04079

./vw --compressed -d tmp/rcvl_train.gz -1 256

average loss = 0.04465

The Tutorial Plan

Baseline online linear algorithm
Common Questions.
Importance Aware Updates
Adaptive updates.

AN A

Conjugate Gradient.
6. Active Learning.

Missing: Online LDA: See Matt's slides
Ask Questions!

Preconditioned Conjugate Gradient

Options

—conjugate gradient: Use batch mode
preconditioned conjugate gradient learning. 2
passes/update. Output predictor compatible with
base algorithm. Requires x5 RAM. Uses cool trick:

9%1(2)
0%z

d"Hd = (x,d)?

—regularization <r>: Add r time the weight
magnitude to the optimization. Reasonable choice =
0.001.

Works well with logistic or squared loss.

What is Conjugate Gradient?

1. Compute average gradient (one pass).

2. Mix gradient with previous step direction to get
new step direction.

3. Compute step size using Newton's method. (one

pass)
4. Update weights.

Step 2 is particular.
“Precondition” = reweight dimensions.

Why Conjugate Gradient?

Addresses the “units” problem.

A decent batch algorithm—requires 10s of passes
sufficient.

Learned regressor is compatible.

See Jonathan Shewchuk’s tutorial for more details.

The Tutorial Plan

Baseline online linear algorithm
Common Questions.
Importance Aware Updates
Adaptive updates.

AN A

Conjugate Gradient.
6. Active Learning.

Missing: Online LDA: See Matt's slides
Ask Questions!

Importance Weighted Active Learning

(IWAL) [BDL'09]

S=0
For t = 1,2,... until no more unlabeled data
1. Receive unlabeled example x;.
2. Choose a probability of labeling p;.
3. With probability p get label y;, and add
(Xt, Ve, i) to S.
4. Let hy=Learn(5).

New instantiation of WAL

[BHLZ'10]: strong consistency / label efficiency
guarantees by using

. 1 logt
pt:mln{l C- <A2 t—1>}

where A; = increase in training error rate if learner is
forced to change its prediction on the new unlabeled
point x;.

New instantiation of WAL

[BHLZ'10]: strong consistency / label efficiency
guarantees by using

. 1 logt
pt:mln{l C- <A2 t—1>}

where A; = increase in training error rate if learner is

forced to change its prediction on the new unlabeled
point x;.

Using VW as base learner, estimate t - A; as the
importance weight required for prediction to switch.
For square-loss update:
1 max{h(x;), 1 — h(x)}
At = .

|
t TNt ©& 0.5

Active learning in Vowpal Wabbit

Simulating active learning: (tuning paramter

C > 0)

vw -active_simulation -active_mellowness C
(increasing C — oo = supervised learning)

Active learning in Vowpal Wabbit

Simulating active learning: (tuning paramter

C > 0)

vw -active_simulation -active_mellowness C
(increasing C — oo = supervised learning)

Deploying active learning;:
vw -active_learning -active_mellowness C
-daemon

» v interacts with an active_interactor (ai)

» for each unlabeled data point, vw sends back a
query decision (+importance weight)

» ai sends labeled importance-weighted examples
as requested

» vw trains using labeled weighted examples

Active learning in Vowpal Wabbit

active_interactor vw

1,y 1,1/p_1)
(gradient
\\\\\\\\“‘~\5:E\\\\\\\\\\\\‘ update)

active_interactor.cc (in git repository) demonstrates how
to implement this protocol.

Active learning simulation results

RCV1 (text binary classification task):

training:
vw -active_simulation -active_mellowness
0.000001

-d rcvl-train -f active.reg -1 10
-initial_t 10

number of examples = 781265
total queries = 98074 (i.e., < 13% of the examples)
(caveat: progressive validation loss not reflective of test loss)

Active learning simulation results

RCV1 (text binary classification task):

training:
vw -active_simulation -active_mellowness
0.000001

-d rcvl-train -f active.reg -1 10
-initial_t 10

number of examples = 781265
total queries = 98074 (i.e., < 13% of the examples)
(caveat: progressive validation loss not reflective of test loss)

testing:
vw -t -d rcvl-test -1 active.reg
average loss = 0.04872 (better than supervised)

Active learning simulation results

astrophysics

0.1
importance aware —+—
0.09 gradient multiplication
. passive

error

0 0.2 0.4 0.6 0.8
fraction of labels queried

revl

ol j " importance aware
0.095 gradient multiplication
0.09 passive -
0.085
0.08
0.075
0.07
0.065
0.06
0.055

error

0.05
0 0.2 0.4 0.6 0.8

fraction of labels queried

error

error

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03

0.02
0

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

spam

importance aware —+—
gradient multiplication -
passive

0.2

0.4 06 0.8
fraction of labels queried

webspam

importance aware
gradient multiplication
passive -

0 0.2

0.4 0.6 0.8
fraction of labels queried

Goals for Future Development

1. Finish scaling up. | want a kilonode program.

2. Native learning reductions. Just like more
complicated losses.

3. Other learning algorithms, as interest dictates.

4. Persistent Daemonization.

