Vowpal Wabbit 5.1

http://hunch.net/~vw/
John Langford

Yahoo! Research

{With help from Nikos Karampatziakis & Daniel Hsu}

git clone git://github.com/JohnLangford/vowpal_wabbit.git

Why VW?

- 1. There should exist an open source online learning system.
- 2. Online learning ⇒ online optimization, which is or competes with best practice for many learning algorithms.
- 3. VW is a multitrick pony, all useful, many orthogonally composable. [hashing, caching, parallelizing, feature crossing, features splitting, feature combining, etc...]
- 4. It's simple. No strange dependencies, currently only 6338 lines of code.

```
On RCV1, training time = ^{\sim}3s [caching, pipelining]
On "large scale learning challenge" datasets < 10
minutes |caching|
[ICML 2009] 10<sup>5</sup>-way personalize spam filter. [-q,
hashing]
[UAI 2009] 10<sup>6</sup>-way conditional probability
estimation. [library, hashing]
[Rutgers grad] Gexample/day data feed. [-daemon]
[Matt Hoffman] LDA-100 on 2.5M Wikipedia in 1
hour.
[Paul Mineiro] True Love @ eHarmony
[Stock Investors] Unknown
```

The Tutorial Plan

- 1. Baseline online linear algorithm
- 2. Common Questions.
- 3. Importance Aware Updates
- 4. Adaptive updates.
- 5. Conjugate Gradient.
- 6. Active Learning.

Missing: Online LDA: See Matt's slides Ask Questions!

The basic learning algorithm (classic)

Start with $\forall i: w_i = 0$, Repeatedly:

- 1. Get example $x \in (\infty, \infty)^*$.
- 2. Make prediction $\hat{y} = \sum_{i} w_{i}x_{i}$ clipped to interval [0,1].
- 3. Learn truth $y \in [0,1]$ with importance I or goto (1).
- 4. Update $w_i \leftarrow w_i + \eta 2(y \hat{y}) I x_i$ and go to (1).

Input Format

and grouping.

```
Label [Importance] [Tag]|Namespace Feature ...
Namespace Feature ... \n
Namespace = String[:Float]
Feature = String[:Float]
Feature and Label are what you expect.
Importance is multiplier on learning rate.
Tag is an identifier for an example, echoed on
example output.
Namespace is a mechanism for feature manipulation
```

Valid input examples

1 | 13:3.96e-02 24:3.47e-02 69:4.62e-02 example_39|excuses the dog ate my homework 1 0.500000 example_39|excuses:0.1 the:0.01 dog ate my homework | teacher male white Bagnell Al ate breakfast

Example Input Options

```
[-d] [ -data ] <f> Read examples from f. Multiple
⇒ use all
cat <f> vw read from stdin
-daemon: read from port 39524
-port : read from port p
-passes < n >: Number of passes over examples.
Can't multipass a noncached stream.
-c [-cache]: Use a cache (or create one if it doesn't
exist).
-cache file \langle fc \rangle: Use the fc cache file. Multiple \Rightarrow
use all. Missing \Rightarrow create. Multiple+missing \Rightarrow
concatenate
-compressed <f>: Read a gzip compressed file.
```

Example Output Options

```
Default diagnostic information:
Progressive Validation, Example Count, Label,
Prediction. Feature Count
-p [-predictions] <po>: File to dump predictions
into
-r [ -raw predictions ] <ro> : File to output
unnormalized prediction into.
-sendto <host[:port]> : Send examples to host:port.
-audit Detailed information about feature name:
feature index: feature value: weight value
-quiet : No default diagnostics
```

Example Manipulation Options

```
-t [-testonly]: Don't train, even if the label is there.
-q [ -quadratic ] <ab>: Cross every feature in
namespace a* with every feature in namespace b*.
Example: -q et (= extra feature for every excuse
feature and teacher feature)
-ignore <a>: Remove a namespace and all features
in it
-sort features: Sort features for small cache files.
-ngram <N>: Generate N-grams on features.
Incompatible with sort features
-skips < S>: with S skips.
-hash all: hash even integer features.
```

Update Rule Options

```
\begin{aligned} -\text{decay\_learning\_rate} &< \text{d} > [=1] \\ -\text{initial\_t} &< \text{i} > [=1] \\ -\text{power\_t} &< \text{p} > [=0.5] \\ -\text{I} & [-\text{learning\_rate}] &< \text{I} > [=10] \end{aligned} \eta_e = \frac{ld^{n-1}i^p}{(i+\sum_{e'< e}i_{e'})^p}
```

Basic observation: there exists no one learning rate satisfying all uses.

Example: state tracking vs. online optimization.

-loss_function {squared,logistic,hinge,quantile}
Switch loss function

Weight Options

```
-b \lceil -bit \text{ precision } \rceil < b > \lceil =18 \rceil : Number of
weights. Too many features in example set⇒
collisions occur.
-i [-initial regressor] <ri>: Initial weight values.
Multiple \Rightarrow average.
-f [ -final regressor ] <rf> : File to store final
weight values in.
-random weights <r>: make initial weights
random. Particularly useful with LDA.
-initial weight <iw>: Initial weight value
```

Useful Parallelization Options

```
-thread-bits <b>: Use 2<sup>b</sup> threads for multicore. Introduces some nondeterminism (floating point add order). Only useful with -q (There are other experimental cluster parallel options.)
```

The Tutorial Plan

- 1. Baseline online linear algorithm
- 2. Common Questions.
- 3. Importance Aware Updates
- 4. Adaptive updates.
- 5. Conjugate Gradient.
- 6. Active Learning.

Missing: Online LDA: See Matt's slides Ask Questions!

How do I choose good features?

Think like a physicist: Everything has units.

Let x_i be the base unit. Output $\langle w \cdot x \rangle$ has unit "probability", "median", etc...

So predictor is a unit transformation machine.

The ideal w_i has units of $\frac{1}{x_i}$ since doubling feature value halves weight.

Update $\propto \frac{\partial L_w(x)}{\partial w} \simeq \frac{\Delta L_w(x)}{\Delta w}$ has units of x_i .

Thus update $=\frac{1}{x_i} + x_i$ unitwise, which doesn't make sense.

Implications

- 1. Choose x_i near 1, so units are less of an issue.
- 2. Choose x_i on a similar scale to x_j so unit mismatch across features doesn't kill you.
- 3. Use other updates which fix the units problem (later).

General advice:

- 1. Many people are happy with TFIDF = weighting sparse features inverse to their occurrence rate.
- 2. Choose features for which a weight vector is easy to reach as a combination of feature vectors.

How do I choose a Loss function?

Understand loss function semantics.

- 1. Minimizer of squared loss = conditional expectation. f(x) = E[y|x] (default).
- 2. Minimizer of quantile = conditional quantile. $Pr(y > f(x)|x) = \tau$
- 3. Hinge loss = tight upper bound on 0/1 loss.
- 4. Minimizer of logistic = conditional probability: Pr(y = 1|x) = f(x). Particularly useful when probabilities are small.

Hinge and logistic require labels in $\{-1,1\}$.

How do I choose a learning rate?

- Are you trying to track a changing system?
 -power_t 0 (forget past quickly).
- 2. If the world is adversarial: -power_t 0.5 (default)
- 3. If the world is iid: -power_t 1 (very aggressive)
- 4. If the error rate is small: -| <|arge>
- 5. If the error rate is large: -l <small> (for integration)
- 6. If -power_t is too aggressive, setting -initial_t softens initial decay.
- 7. For multiple passes -decay_learning_rate in [0.5, 1] is sensible. values < 1 protect against overfitting.

How do I order examples?

There are two choices:

- 1. Time order, if the world is nonstationary.
- 2. Permuted order, if not.

A bad choice: all label 0 examples before all label 1 examples.

How do I debug?

- Is your progressive validation loss going down as you train? (no => malordered examples or bad choice of learning rate)
- 3. Are the predictions sensible?
- 4. Do you see the right number of features coming up?

How do I figure out which features are important?

- 1. Save state
- 2. Create a super-example with all features
- 3. Start with -audit option
- 4. Save printout.

(Seems whacky: but this works with hashing.)

How do I efficiently move/store data?

- 1. Use -noop and -cache to create cache files.
- 2. Use -cache multiple times to use multiple caches and/or create a supercache.
- 3. Use -port and -sendto to ship data over the network.
- -compress generally saves space at the cost of time.

How do I avoid recreating cachefiles as I experiment?

- 1. Create cache with -b < large>, then experiment with -b < small>.
- 2. Partition features intelligently across namespaces and use -ignore <f>.

The Tutorial Plan

- 1. Baseline online linear algorithm
- 2. Common Questions.
- 3. Importance Aware Updates
- 4. Adaptive updates.
- 5. Conjugate Gradient.
- 6. Active Learning.

Missing: Online LDA: See Matt's slides Ask Questions!

Examples with importance weights

The preceding is not correct (use "-loss_function classic" if you want it).

The update rule is actually importance invariant, which helps substantially.

Principle

Having an example with importance weight h should be equivalent to having the example h times in the dataset.

(Karampatziakis & Langford, http://arxiv.org/abs/1011.1576 for details.)

What is $s(\cdot)$?

Take limit as update size goes to 0 but number of updates goes to ∞ .

What is $s(\cdot)$?

Take limit as update size goes to 0 but number of updates goes to ∞ .

Surprise: simplifies to closed form.

ourprise. empiries to crossa remin		
Loss	$\ell(p, y)$	Update $s(h)$
Squared	$(y-p)^2$	$\frac{p-y}{x^{\top}x}\left(1-e^{-\frac{1}{h}\eta x^{\top}x}\right)$
Logistic	$\log(1 + e^{-yp})$	$\frac{W(e^{h\eta x^\top x + yp + e^{yp}}) - h\eta x^\top x - e^{yp}}{yx^\top x} \text{ for } y \in \{-1, 1\}$
Hinge	$\max(0, 1 - yp)$	$-y \min\left(h\eta, rac{1-yp}{\mathbf{x}^{\top}\mathbf{x}} ight)$ for $y \in \{-1, 1\}$
τ-Quantile	if $y > p$ $\tau(y - p)$ if $y \le p$ $(1 - \tau)(p - y)$	if $y > p$ $-\tau \min(h\eta, \frac{y-p}{\tau x^{\top}x})$ if $y \le p$ $(1-\tau)\min(h\eta, \frac{p-y}{(1-\tau)x^{\top}x})$

⁺ many others worked out. Similar in effect to "implicit gradient", but closed form.

Robust results for unweighted problems

The Tutorial Plan

- 1. Baseline online linear algorithm
- 2. Common Questions.
- 3. Importance Aware Updates
- 4. Adaptive updates.
- 5. Conjugate Gradient.
- 6. Active Learning.

Missing: Online LDA: See Matt's slides Ask Questions!

Adaptive Updates

- Adaptive, individual learning rates in VW.
- ► It's really gradient descent separately on each coordinate *i* with

$$\eta_{t,i} = \frac{1}{\sqrt{\sum_{s=1}^{t} \left(\frac{\partial \ell(w_s^{\top} x_s, y_s)}{\partial w_{s,i}}\right)^2}}$$

- ➤ Coordinate-wise scaling of the data less of an issue (units issue addressed) see (Duchi, Hazan, and Singer / McMahan and Streeter, COLT 2010)
- Requires x2 RAM at learning time, but learned regressor is compatible.

Some tricks involved

▶ Store sum of squared gradients w.r.t w_i near w_i .

```
float InvSqrt(float x){
    float xhalf = 0.5f * x;
    int i = *(int*)\&x:
    i = 0x5f3759d5 - (i >> 1);
    x = *(float*)\&i:
    x = x*(1.5f - xhalf*x*x):
    return x;
  Special SSE rsqrt instruction is a little better
```

Experiments

Raw Data

```
./vw --adaptive -b 24 --compressed -d tmp/spam_train.gz
average loss = 0.02878
./vw -b 24 --compressed -d tmp/spam_train.gz -l 100
average loss = 0.03267
```

TFIDE scaled data

```
./vw --adaptive --compressed -d tmp/rcv1_train.gz -l 1
average loss = 0.04079
./vw --compressed -d tmp/rcv1_train.gz -l 256
average loss = 0.04465
```

The Tutorial Plan

- 1. Baseline online linear algorithm
- 2. Common Questions.
- 3. Importance Aware Updates
- 4. Adaptive updates.
- 5. Conjugate Gradient.
- 6. Active Learning.

Missing: Online LDA: See Matt's slides Ask Questions!

Preconditioned Conjugate Gradient Options

-conjugate gradient: Use batch mode preconditioned conjugate gradient learning. 2 passes/update. Output predictor compatible with base algorithm. Requires x5 RAM. Uses cool trick:

$$d^T H d = \frac{\partial^2 I(z)}{\partial^2 z} \langle x, d \rangle^2$$

-regularization <r>: Add r time the weight magnitude to the optimization. Reasonable choice = 0.001.

Works well with logistic or squared loss.

What is Conjugate Gradient?

- 1. Compute average gradient (one pass).
- 2. Mix gradient with previous step direction to get new step direction.
- 3. Compute step size using Newton's method. (one pass)
- 4. Update weights.

Step 2 is particular.

"Precondition" = reweight dimensions.

Why Conjugate Gradient?

Addresses the "units" problem.

A decent batch algorithm—requires 10s of passes sufficient.

Learned regressor is compatible.

See Jonathan Shewchuk's tutorial for more details.

The Tutorial Plan

- 1. Baseline online linear algorithm
- 2. Common Questions.
- 3. Importance Aware Updates
- 4. Adaptive updates.
- 5. Conjugate Gradient.
- 6. Active Learning.

Missing: Online LDA: See Matt's slides Ask Questions!

Importance Weighted Active Learning (IWAL) [BDL'09]

$$S=\emptyset$$

For $t=1,2,\ldots$ until no more unlabeled data

- 1. Receive unlabeled example x_t .
- 2. Choose a probability of labeling p_t .
- 3. With probability p get label y_t , and add $(x_t, y_t, \frac{1}{p_t})$ to S.
- 4. Let $h_t = \text{Learn}(S)$.

New instantiation of IWAL

[BHLZ'10]: strong consistency / label efficiency guarantees by using

$$\rho_t = \min\left\{1, \ C \cdot \left(\frac{1}{\Delta_t^2} \cdot \frac{\log t}{t-1}\right)\right\}$$

where Δ_t = increase in training error rate if learner is forced to change its prediction on the new unlabeled point x_t .

New instantiation of IWAL

[BHLZ'10]: strong consistency / label efficiency guarantees by using

$$p_t = \min\left\{1, \ C \cdot \left(\frac{1}{\Delta_t^2} \cdot \frac{\log t}{t-1}\right)\right\}$$

where Δ_t = increase in training error rate if learner is forced to change its prediction on the new unlabeled point x_t .

Using VW as base learner, estimate $t \cdot \Delta_t$ as the importance weight required for prediction to switch. For square-loss update:

$$\Delta_t := \frac{1}{t \cdot \eta_t} \cdot \log \frac{\max\{h(x_t), \ 1 - h(x_t)\}}{0.5}$$

Active learning in Vowpal Wabbit

Simulating active learning: (tuning paramter C>0)

vw -active_simulation -active_mellowness C (increasing $C\to\infty=$ supervised learning)

Active learning in Vowpal Wabbit

```
Simulating active learning: (tuning paramter C > 0)
```

```
vw -active_simulation -active_mellowness C (increasing C \rightarrow \infty = supervised learning)
```

Deploying active learning:

```
vw -active_learning -active_mellowness C
-daemon
```

- vw interacts with an active_interactor (ai)
- ► for each unlabeled data point, vw sends back a query decision (+importance weight)
- ▶ ai sends labeled importance-weighted examples as requested
- ▶ vw trains using labeled weighted examples

Active learning in Vowpal Wabbit

active_interactor.cc (in git repository) demonstrates how to implement this protocol.

Active learning simulation results

RCV1 (text binary classification task):

```
training:
```

```
vw -active_simulation -active_mellowness
0.000001
   -d rcv1-train -f active.reg -l 10
-initial_t 10
number of examples = 781265
total queries = 98074 (i.e., < 13% of the examples)
(caveat: progressive validation loss not reflective of test loss)</pre>
```

Active learning simulation results

RCV1 (text binary classification task):

```
training:
vw -active_simulation -active_mellowness
0.000001
   -d rcv1-train -f active.reg -l 10
-initial t 10
number of examples = 781265
total queries = 98074 (i.e., < 13\% of the examples)
(caveat: progressive validation loss not reflective of test loss)
testing
vw -t -d rcv1-test -i active.reg
```

average loss = 0.04872 (better than supervised)

Active learning simulation results

Goals for Future Development

- 1. Finish scaling up. I want a kilonode program.
- 2. Native learning reductions. Just like more complicated losses.
- 3. Other learning algorithms, as interest dictates.
- 4. Persistent Daemonization.