
Vowpal Wabbit 6.1

http://hunch.net/~vw/

John Langford, then Miroslav Dudik, then Alekh
Agarwal

git clone
git://github.com/JohnLangford/vowpal_wabbit.git

Goals of the VW project

1. State of the art in scalable, fast, e�cient
Machine Learning. See Miro & Alekh parts. VW
is (by far) the most scalable public linear learner,
and plausibly the most scalable anywhere.

2. Support research into new ML algorithms. We
ML researchers can deploy new e�cient
algorithms on an e�cient platform e�ciently.

3. Simplicity. No strange dependencies, currently
only 7054 lines of code.

4. It just works. A package in debian & R.
Otherwise, users just type �make�, and get a
working system. At least a half-dozen companies
use VW. Favorite App: True Love @ Eharmony.

The Tutorial Plan

1. Baseline online linear algorithm
2. What goes wrong? And �xes

2.1 Importance Aware Updates
2.2 Adaptive updates

3. LBFGS: Miro's turn

4. Terascale Learning: Alekh's turn.

5. Common questions we don't have time to cover.

6. Active Learning: See Daniels's presentation last
year.

7. LDA: See Matt's presentation last year.

Ask Questions!

Demonstration

time zcat rcv1.train.vw.gz| vw -c

The basic learning algorithm (classic)

Start with ∀i : wi = 0, Repeatedly:

1. Get example x ∈ (∞,∞)∗.
2. Make prediction ŷ =

∑
i wixi clipped to interval

[0, 1].

3. Learn truth y ∈ [0, 1] with importance I or goto
(1).

4. Update wi ← wi + η2(y − ŷ)Ixi and go to (1).

Input Format

Label [Importance] [Base] ['Tag] |Namespace Feature
... |Namespace Feature \n
Namespace = String[:Float]
Feature = String[:Float]
If String is an integer, that index is used, otherwise a
hash function computes an index.
Feature and Label are what you expect.
Importance is multiplier on learning rate, default 1.
Base is a baseline prediction, default 0.
Tag is an identi�er for an example, echoed on
example output.
Namespace is a mechanism for feature manipulation
and grouping.

Valid input examples

1 | 13:3.96e-02 24:3.47e-02 69:4.62e-02
'example_39 |excuses the dog ate my homework
1 0.500000 'example_39 |excuses:0.1 the:0.01 dog
ate my homework |teacher male white Bagnell AI ate
breakfast

Example Input Options

[-d] [�data] <f> : Read examples from f. Multiple
⇒ use all
cat <f> | vw : read from stdin
�daemon : read from port 26542
�port <p> : read from port p
�passes <n> : Number of passes over examples.
Can't multipass a noncached stream.
-c [�cache] : Use a cache (or create one if it doesn't
exist).
�cache_�le <fc> : Use the fc cache �le. Multiple ⇒
use all. Missing ⇒ create. Multiple+missing ⇒
concatenate
�compressed: gzip compress cache_�le.

Example Output Options

Default diagnostic information:
Progressive Validation, Example Count, Label,
Prediction, Feature Count
-p [�predictions] <po>: File to dump predictions
into.
-r [�raw_predictions] <ro> : File to output
unnormalized prediction into.
�sendto <host[:port]> : Send examples to host:port.
�audit : Detailed information about feature_name:
feature_index: feature_value: weight_value
�quiet : No default diagnostics

Example Manipulation Options

-t [�testonly] : Don't train, even if the label is there.
-q [�quadratic] <ab>: Cross every feature in
namespace a* with every feature in namespace b*.
Example: -q et (= extra feature for every excuse
feature and teacher feature)
�ignore <a>: Remove a namespace and all features
in it.
�noconstant: Remove the default constant feature.
�sort_features: Sort features for small cache �les.
�ngram <N>: Generate N-grams on features.
Incompatible with sort_features
�skips <S>: ...with S skips.
�hash all: hash even integer features.

Update Rule Options

�decay_learning_rate <d> [= 1]
�initial_t <i> [= 1]
�power_t <p> [= 0.5]
-l [�learning_rate] <l> [= 10]

ηe =
ldn−1ip

(i +
∑

e′<e ie′)
p

Basic observation: there exists no one learning rate
satisfying all uses.
Example: state tracking vs. online optimization.
�loss_function
{squared,logistic,hinge,quantile,classic} Switch loss
function

Weight Options

-b [�bit_precision] [=18] : log(Number of
weights). Too many features in example set⇒
collisions occur.
-i [�initial_regressor] <ri> : Initial weight values.
Multiple ⇒ average.
-f [��nal_regressor] <rf> : File to store �nal
weight values in.
�readable_model <�lename>: As -f, but in text.
�save_per_pass Save the model after every pass
over data.
�random_weights <r>: make initial weights
random. Particularly useful with LDA.
�initial_weight <iw>: Initial weight value

The Tutorial Plan

1. Baseline online linear algorithm
2. What goes wrong? And �xes

2.1 Importance Aware Updates
2.2 Adaptive updates

3. LBFGS: Miro's turn

4. Terascale Learning: Alekh's turn.

5. Common questions we don't have time to cover.

6. Active Learning: See Daniels's presentation last
year.

7. LDA: See Matt's presentation last year.

Ask Questions!

Examples with large importance weights
don't work!

Common case: class is imbalanced, so you
downsample the common class and present the
remainder with a compensating importance weight.
(but there are many other examples)

Actually, I lied. The preceeding update only happens
for ��loss_function classic�.
The update rule is really importance invariant [KL11],
which helps substantially.

Principle

An example with importance weight h is equivalent
to having the example h times in the dataset.

Examples with large importance weights
don't work!

Common case: class is imbalanced, so you
downsample the common class and present the
remainder with a compensating importance weight.
(but there are many other examples)

Actually, I lied. The preceeding update only happens
for ��loss_function classic�.
The update rule is really importance invariant [KL11],
which helps substantially.

Principle

An example with importance weight h is equivalent
to having the example h times in the dataset.

Learning with importance weights

y

yw>t x yw>t x

−η(∇`)>x

yw>t x

−η(∇`)>x

w>t+1x yw>t x

−6η(∇`)>x

yw>t x

−6η(∇`)>x

w>t+1x ??yw>t x

−η(∇`)>x

w>t+1xyw>t x w>t+1x yw>t x w>t+1x

s(h)||x||2

Learning with importance weights

y

yw>t x

yw>t x

−η(∇`)>x

yw>t x

−η(∇`)>x

w>t+1x yw>t x

−6η(∇`)>x

yw>t x

−6η(∇`)>x

w>t+1x ??yw>t x

−η(∇`)>x

w>t+1xyw>t x w>t+1x yw>t x w>t+1x

s(h)||x||2

Learning with importance weights

yyw>t x

yw>t x

−η(∇`)>x

yw>t x

−η(∇`)>x

w>t+1x yw>t x

−6η(∇`)>x

yw>t x

−6η(∇`)>x

w>t+1x ??yw>t x

−η(∇`)>x

w>t+1xyw>t x w>t+1x yw>t x w>t+1x

s(h)||x||2

Learning with importance weights

yyw>t x yw>t x

−η(∇`)>x

yw>t x

−η(∇`)>x

w>t+1x

yw>t x

−6η(∇`)>x

yw>t x

−6η(∇`)>x

w>t+1x ??yw>t x

−η(∇`)>x

w>t+1xyw>t x w>t+1x yw>t x w>t+1x

s(h)||x||2

Learning with importance weights

yyw>t x yw>t x

−η(∇`)>x

yw>t x

−η(∇`)>x

w>t+1x

yw>t x

−6η(∇`)>x

yw>t x

−6η(∇`)>x

w>t+1x ??yw>t x

−η(∇`)>x

w>t+1xyw>t x w>t+1x yw>t x w>t+1x

s(h)||x||2

Learning with importance weights

yyw>t x yw>t x

−η(∇`)>x

yw>t x

−η(∇`)>x

w>t+1x yw>t x

−6η(∇`)>x

yw>t x

−6η(∇`)>x

w>t+1x ??

yw>t x

−η(∇`)>x

w>t+1xyw>t x w>t+1x yw>t x w>t+1x

s(h)||x||2

Learning with importance weights

yyw>t x yw>t x

−η(∇`)>x

yw>t x

−η(∇`)>x

w>t+1x yw>t x

−6η(∇`)>x

yw>t x

−6η(∇`)>x

w>t+1x ??

yw>t x

−η(∇`)>x

w>t+1x

yw>t x w>t+1x yw>t x w>t+1x

s(h)||x||2

Learning with importance weights

yyw>t x yw>t x

−η(∇`)>x

yw>t x

−η(∇`)>x

w>t+1x yw>t x

−6η(∇`)>x

yw>t x

−6η(∇`)>x

w>t+1x ??yw>t x

−η(∇`)>x

w>t+1x

yw>t x w>t+1x

yw>t x w>t+1x

s(h)||x||2

Learning with importance weights

yyw>t x yw>t x

−η(∇`)>x

yw>t x

−η(∇`)>x

w>t+1x yw>t x

−6η(∇`)>x

yw>t x

−6η(∇`)>x

w>t+1x ??yw>t x

−η(∇`)>x

w>t+1xyw>t x w>t+1x

yw>t x w>t+1x

s(h)||x||2

What is s(·)?

Take limit as update size goes to 0 but number of
updates goes to ∞.

Surprise: simpli�es to closed form.
Loss `(p, y) Update s(h)

Squared (y − p)2 p−y
x>x

„
1− e−hηx>x

«
Logistic log(1 + e−yp)

W (ehηx>x+yp+eyp)−hηx>x−eyp

yx>x
Hinge max(0, 1− yp) −y min

“
hη, 1−yp

x>x

”
for y ∈ {−1, 1}

τ-Quantile
y > p : τ(y − p)
y ≤ p : (1− τ)(p − y)

y > p : −τ min(hη, y−p
τx>x

)

y ≤ p : (1− τ)min(hη, p−y
(1−τ)x>x

)

+ many others worked out. Similar in e�ect to �implicit

gradient�, but closed form.

What is s(·)?

Take limit as update size goes to 0 but number of
updates goes to ∞.
Surprise: simpli�es to closed form.

Loss `(p, y) Update s(h)

Squared (y − p)2 p−y
x>x

„
1− e−hηx>x

«
Logistic log(1 + e−yp)

W (ehηx>x+yp+eyp)−hηx>x−eyp

yx>x
Hinge max(0, 1− yp) −y min

“
hη, 1−yp

x>x

”
for y ∈ {−1, 1}

τ-Quantile
y > p : τ(y − p)
y ≤ p : (1− τ)(p − y)

y > p : −τ min(hη, y−p
τx>x

)

y ≤ p : (1− τ)min(hη, p−y
(1−τ)x>x

)

+ many others worked out. Similar in e�ect to �implicit

gradient�, but closed form.

Robust results for unweighted problems

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97

st
an

da
rd

importance aware

astro - logistic loss

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98

st
an

da
rd

importance aware

spam - quantile loss

 0.9

 0.905

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

 0.94

 0.945

 0.95

 0.9 0.905 0.91 0.915 0.92 0.925 0.93 0.935 0.94 0.945 0.95

st
an

da
rd

importance aware

rcv1 - squared loss

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

st
an

da
rd

importance aware

webspam - hinge loss

It takes forever to converge!

Think like a physicist: Everything has units.
Let xi be the base unit. Output 〈w · x〉 has unit
�probability�, �median�, etc...
So predictor is a unit transformation machine.

The ideal wi has units of
1

xi
since doubling feature

value halves weight.

Update ∝ ∂Lw (x)
∂w ' ∆Lw (x)

∆w
has units of xi .

Thus update = 1

xi
+ xi unitwise, which doesn't make

sense.

It takes forever to converge!

Think like a physicist: Everything has units.
Let xi be the base unit. Output 〈w · x〉 has unit
�probability�, �median�, etc...
So predictor is a unit transformation machine.

The ideal wi has units of
1

xi
since doubling feature

value halves weight.

Update ∝ ∂Lw (x)
∂w ' ∆Lw (x)

∆w
has units of xi .

Thus update = 1

xi
+ xi unitwise, which doesn't make

sense.

It takes forever to converge!

Think like a physicist: Everything has units.
Let xi be the base unit. Output 〈w · x〉 has unit
�probability�, �median�, etc...
So predictor is a unit transformation machine.

The ideal wi has units of
1

xi
since doubling feature

value halves weight.

Update ∝ ∂Lw (x)
∂w ' ∆Lw (x)

∆w
has units of xi .

Thus update = 1

xi
+ xi unitwise, which doesn't make

sense.

Implications

1. Choose xi near 1, so units are less of an issue.

2. Choose xi on a similar scale to xj so unit
mismatch across features doesn't kill you.

3. Use a more sophisticated update.

General advice:

1. Many people are happy with TFIDF = weighting
sparse features inverse to their occurrence rate.

2. Choose features for which a weight vector is easy
to reach as a combination of feature vectors.

Adaptive Updates [DHS10, MS10]

Create per-feature learning rates.

Let li =
∑t

s=1

(
∂`(w>s xs ,ys)

∂ws,i

)2
Parameter i has learning rate

ηt,i =
η

l
p
i

If p = 1, this deals with the units problem.

Otherwise, renormalize by
(∑

i x
2

i

)1/(1−p)
to help

deal with units problem. �nonormalize turns this o�.

Adaptive Updates [DHS10, MS10]

Create per-feature learning rates.

Let li =
∑t

s=1

(
∂`(w>s xs ,ys)

∂ws,i

)2
Parameter i has learning rate

ηt,i =
η

l
p
i

If p = 1, this deals with the units problem.

Otherwise, renormalize by
(∑

i x
2

i

)1/(1−p)
to help

deal with units problem. �nonormalize turns this o�.

All together

time vw -c �exact_adaptive_norm �power_t 1 -l 0.5

The interaction of adaptive, importance invariant,
renormalized updates is complex, but worked out.
Thanks to Paul Mineiro who started that.
Look at local_predict() in gd.cc for details.

All together

time vw -c �exact_adaptive_norm �power_t 1 -l 0.5

The interaction of adaptive, importance invariant,
renormalized updates is complex, but worked out.
Thanks to Paul Mineiro who started that.
Look at local_predict() in gd.cc for details.

The Tutorial Plan

1. Baseline online linear algorithm
2. What goes wrong? And �xes

2.1 Importance Aware Updates
2.2 Adaptive updates

3. LBFGS: Miro's turn

4. Terascale Learning: Alekh's turn.

5. Common questions we don't have time to cover.

6. Active Learning: See Daniels's presentation last
year.

7. LDA: See Matt's presentation last year.

Ask Questions!

Goals for Future Development

1. Native learning reductions. Just like more
complicated losses.

2. Other learning algorithms, as interest dictates.

3. Librari�cation, so people can use VW in their
favorite language.

How do I choose a Loss function?

Understand loss function semantics.

1. Minimizer of squared loss = conditional
expectation. f (x) = E [y |x] (default).

2. Minimizer of quantile = conditional quantile.
Pr(y > f (x)|x) = τ

3. Hinge loss = tight upper bound on 0/1 loss.

4. Minimizer of logistic = conditional probability:
Pr(y = 1|x) = f (x). Particularly useful when
probabilities are small.

Hinge and logistic require labels in {−1, 1}.

How do I choose a learning rate?

1. First experiment with a potentially better
algo:�exact_adaptive_norm

2. Are you trying to track a changing system?
�power_t 0 (forget past quickly).

3. If the world is adversarial: �power_t 0.5
(default)

4. If the world is iid: �power_t 1 (very aggressive)

5. If the error rate is small: -l <large>

6. If the error rate is large: -l <small> (for
integration)

7. If �power_t is too aggressive, setting �initial_t
softens initial decay.

How do I order examples?

There are two choices:

1. Time order, if the world is nonstationary.

2. Permuted order, if not.

A bad choice: all label 0 examples before all label 1
examples.

How do I debug?

1. Is your progressive validation loss going down as
you train? (no => malordered examples or bad
choice of learning rate)

2. If you test on the train set, does it work? (no
=> something crazy)

3. Are the predictions sensible?

4. Do you see the right number of features coming
up?

How do I �gure out which features are
important?

1. Save state

2. Create a super-example with all features

3. Start with �audit option

4. Save printout.

(Seems whacky: but this works with hashing.)

How do I e�ciently move/store data?

1. Use �noop and �cache to create cache �les.

2. Use �cache multiple times to use multiple
caches and/or create a supercache.

3. Use �port and �sendto to ship data over the
network.

4. �compress generally saves space at the cost of
time.

How do I avoid recreating cache�les as I
experiment?

1. Create cache with -b <large>, then experiment
with -b <small>.

2. Partition features intelligently across
namespaces and use �ignore <f>.

