-
Notifications
You must be signed in to change notification settings - Fork 0
/
ResNet.py
99 lines (78 loc) · 3.43 KB
/
ResNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# -*- coding: utf-8 -*-
"""
Created on Mon Jan 4 15:37:58 2021
@author: Admin
"""
import torch
import torch.nn as nn
class block(nn.Module):
def __init__(self, in_channels, out_channels, identity_downsample=None, stride=1):
super(block, self).__init__()
self.expansion = 4
self.conv1 = nn.Conv2d(in_channels, out_channels,kernel_size=1, stride = 1, padding=0)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels,out_channels, kernel_size = 3, stride =stride, padding = 1)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels, out_channels*self.expansion, kernel_size =1, stride = 1, padding = 0)
self.bn3 = nn.BatchNorm2d(out_channels*self.expansion)
self.relu = nn.ReLU()
self.identity_downsample = identity_downsample
def forward(self, x):
identity = x
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.bn3(x)
if self.identity_downsample is not None:
identity = self.identity_downsample(identity)
x += identity
x = self.relu(x)
return x
class ResNet(nn.Module):
def __init__(self, block, layer, img_channels, num_classes):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv = nn.Conv2d(img_channels, 64, kernel_size = 7, stride = 2, padding =3)
self.bn = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size = (3,3), stride = (2,2), padding = 1)
self.layer1 = self.make_layer(block, layer[0], 64, 1)
self.layer2 = self.make_layer(block, layer[1], 128, 2)
self.layer3 = self.make_layer(block, layer[2], 256, 2)
self.layer4 = self.make_layer(block, layer[3], 512, 2)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(512*4, num_classes)
def forward(self, x):
x = self.relu(self.bn(self.conv(x)))
x = self.pool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.reshape(x.shape[0], -1)
x = self.fc(x)
return x
def make_layer(self, block, num_res_blocks, out_channels, stride):
layers = []
identity_downsample = None
if stride != 1 or self.in_channels != out_channels*4:
identity_downsample = nn.Sequential(nn.Conv2d(self.in_channels, out_channels*4, kernel_size=1, stride = stride),
nn.BatchNorm2d(out_channels*4))
layers.append(block(self.in_channels,out_channels,identity_downsample, stride))
self.in_channels = out_channels*4
for i in range(num_res_blocks - 1):
layers.append(block(self.in_channels,out_channels))
return nn.Sequential(*layers)
def ResNet100(img_channels = 3, num_classes=1000):
return ResNet(block, [3,4,23,3], img_channels,num_classes)
model = ResNet100()
from torchsummary import summary
print(summary(model, (3,224,224), device = 'cpu'))
x = torch.randn(3,3,224,224)
y = model(x)
print(y.shape)