-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcensoring.py
157 lines (131 loc) · 6.47 KB
/
censoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import re
import spacy
from spacy.matcher import Matcher
from google.cloud import language_v1
import os
# Function to create a matcher with specified flags
def create_matcher(nlp, censor_flags):
matcher = Matcher(nlp.vocab)
if censor_flags['phones']:
phone_patterns = [
[{"SHAPE": "ddd"}, {"ORTH": "-", "OP": "?"}, {"SHAPE": "ddd"}, {"ORTH": "-", "OP": "?"}, {"SHAPE": "dddd"}],
[{"SHAPE": "(ddd)"}, {"ORTH": "-", "OP": "?"}, {"SHAPE": "ddd"}, {"ORTH": "-", "OP": "?"}, {"SHAPE": "dddd"}],
[{"SHAPE": "ddd"}, {"ORTH": ".", "OP": "?"}, {"SHAPE": "ddd"}, {"ORTH": ".", "OP": "?"}, {"SHAPE": "dddd"}],
[{"SHAPE": "+"}, {"SHAPE": "dd"}, {"ORTH": " ", "OP": "?"}, {"SHAPE": "dddddddddd", "OP": "?"}],
[{"SHAPE": "dddddddddd"}]
]
for pattern in phone_patterns:
matcher.add("PHONE_NUMBER", [pattern])
if censor_flags['names']:
name_pattern = [[{"ENT_TYPE": "PERSON"}]]
matcher.add("NAMES", name_pattern)
if censor_flags['dates']:
date_pattern = [[{"ENT_TYPE": "DATE"}]]
matcher.add("DATES", date_pattern)
if censor_flags['address']:
email_pattern = [{"TEXT": {"REGEX": "[a-zA-Z0-9+_.-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]+"}}]
matcher.add("EMAIL", [email_pattern])
return matcher
# Helper function to preprocess phone numbers
def preprocess_text_for_phones(text, stats):
phone_regex = r'\+?\d[\d\s\-\(\)]{10,14}\d'
matches = re.finditer(phone_regex, text)
phone_count = 0
for match in matches:
start, end = match.span()
text = text[:start] + "█" * (end - start) + text[end:]
phone_count += 1
stats['PHONES'] += phone_count
return text, stats
def preprocess_text_for_dates(text, stats):
date_regex = r'\b(?:\d{1,2}[-/.]\d{1,2}[-/.]\d{2,4})\b'
matches = re.finditer(date_regex, text)
date_count = 0
for match in matches:
start, end = match.span()
text = text[:start] + "█" * (end - start) + text[end:]
date_count += 1
stats['DATES'] += date_count
return text, stats
def byte_offset_to_char_position(text, byte_offset):
# Encode the text up to the byte offset into bytes using UTF-8
# Then count the length of the encoded bytes, which gives the character position
encoded_text = text.encode('utf-8')
char_position = 0
byte_count = 0
for char in text:
char_length = len(char.encode('utf-8'))
if byte_count + char_length > byte_offset:
break
byte_count += char_length
char_position += 1
return char_position
def censor_text_with_google_nlp(text, censor_flags, stats):
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = "files/dataengineering-project1-ddca4f2d3131.json"
# Use Google NLP to identify and censor additional sensitive information
if len(text) > 5000:
text = text[:5000]
client = language_v1.LanguageServiceClient()
document = language_v1.Document(content=text, type_=language_v1.Document.Type.PLAIN_TEXT)
response = client.analyze_entities(document=document, encoding_type='UTF8')
censored_text = list(text)
# Special handling for addresses
for entity in response.entities:
entity_type = language_v1.Entity.Type(entity.type_).name
if (entity_type == "ADDRESS" and censor_flags['address']):
for mention in entity.mentions:
# Ignore common type mentions
if mention.type == language_v1.EntityMention.Type.COMMON:
continue
# Censor the mention
start_char_pos = byte_offset_to_char_position(text, mention.text.begin_offset)
end_char_pos = byte_offset_to_char_position(text, mention.text.begin_offset + len(mention.text.content))
for i in range(start_char_pos, end_char_pos):
if i < len(censored_text): # Ensure index is within bounds
censored_text[i] = "█"
# Update stats
stats['ADDRESS'] += 1
#doing this in two pases so that first addresses are censored and then entities with location tag so that there are no overlaps and lesser false negatives
partially_censored_text = "".join(censored_text)
document = language_v1.Document(content=partially_censored_text, type_=language_v1.Document.Type.PLAIN_TEXT)
response = client.analyze_entities(document=document, encoding_type='UTF8')
for entity in response.entities:
entity_type = language_v1.Entity.Type(entity.type_).name
if (entity_type == "PERSON" and censor_flags['names']) or \
(entity_type == "LOCATION" and censor_flags['address']):
for mention in entity.mentions:
if mention.type == language_v1.EntityMention.Type.COMMON:
continue
start_char_pos = byte_offset_to_char_position(partially_censored_text, mention.text.begin_offset)
end_char_pos = byte_offset_to_char_position(partially_censored_text, mention.text.begin_offset + len(mention.text.content))
for i in range(start_char_pos, end_char_pos):
if i < len(censored_text): # Ensure index is within bounds
censored_text[i] = "█"
# Update stats
if entity_type == "PERSON":
stats['NAMES'] += 1
elif entity_type == "LOCATION":
stats['ADDRESS'] += 1
return "".join(censored_text), stats
# Helper function to apply censorship to matched spans
def apply_censoring(span, censored_text):
for i in range(span.start_char, span.end_char):
censored_text[i] = "█"
# Main censoring function
def censor_text(text, nlp, matcher, censor_flags):
stats = {'NAMES': 0, 'DATES': 0, 'PHONES': 0, 'ADDRESS': 0, 'EMAIL': 0}
if censor_flags['phones']:
text, stats = preprocess_text_for_phones(text, stats)
if censor_flags['dates']:
text, stats = preprocess_text_for_dates(text, stats)
if censor_flags['names'] or censor_flags['address']:
text, stats = censor_text_with_google_nlp(text, censor_flags, stats)
doc = nlp(text)
censored_text = list(text)
matches = matcher(doc)
for match_id, start, end in matches:
span = doc[start:end]
apply_censoring(span, censored_text)
if nlp.vocab.strings[match_id] in stats:
stats[nlp.vocab.strings[match_id]] += 1
return "".join(censored_text), stats