You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Traceback (most recent call last):
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/gradio/queueing.py", line 407, in call_prediction
output = await route_utils.call_process_api(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/gradio/route_utils.py", line 226, in call_process_api
output = await app.get_blocks().process_api(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/gradio/blocks.py", line 1550, in process_api
result = await self.call_function(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/gradio/blocks.py", line 1185, in call_function
prediction = await anyio.to_thread.run_sync(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/anyio/to_thread.py", line 56, in run_sync
return await get_async_backend().run_sync_in_worker_thread(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/anyio/_backends/_asyncio.py", line 2144, in run_sync_in_worker_thread
return await future
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/anyio/_backends/_asyncio.py", line 851, in run
result = context.run(func, *args)
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/gradio/utils.py", line 661, in wrapper
response = f(*args, **kwargs)
File "/home/dubaiprince/Projects/MVControl-threestudio/app_stage1.py", line 237, in process
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image']
File "/home/dubaiprince/Projects/MVControl-threestudio/extern/lgm/gs.py", line 76, in render
rendered_image, radii, rendered_depth, rendered_alpha = rasterizer(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
return forward_call(*args, **kwargs)
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/diff_gaussian_rasterization/init.py", line 213, in forward
return rasterize_gaussians(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/diff_gaussian_rasterization/init.py", line 32, in rasterize_gaussians
return _RasterizeGaussians.apply(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/torch/autograd/function.py", line 598, in apply
return super().apply(*args, **kwargs) # type: ignore[misc]
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/diff_gaussian_rasterization/init.py", line 92, in forward
num_rendered, color, depth, alpha, radii, geomBuffer, binningBuffer, imgBuffer = _C.rasterize_gaussians(*args)
RuntimeError: means3D must have dimensions (num_points, 3)
I successfully launch the exp, but I get this errors, what's the issues
The text was updated successfully, but these errors were encountered:
Traceback (most recent call last):
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/gradio/queueing.py", line 407, in call_prediction
output = await route_utils.call_process_api(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/gradio/route_utils.py", line 226, in call_process_api
output = await app.get_blocks().process_api(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/gradio/blocks.py", line 1550, in process_api
result = await self.call_function(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/gradio/blocks.py", line 1185, in call_function
prediction = await anyio.to_thread.run_sync(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/anyio/to_thread.py", line 56, in run_sync
return await get_async_backend().run_sync_in_worker_thread(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/anyio/_backends/_asyncio.py", line 2144, in run_sync_in_worker_thread
return await future
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/anyio/_backends/_asyncio.py", line 851, in run
result = context.run(func, *args)
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/gradio/utils.py", line 661, in wrapper
response = f(*args, **kwargs)
File "/home/dubaiprince/Projects/MVControl-threestudio/app_stage1.py", line 237, in process
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image']
File "/home/dubaiprince/Projects/MVControl-threestudio/extern/lgm/gs.py", line 76, in render
rendered_image, radii, rendered_depth, rendered_alpha = rasterizer(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
return forward_call(*args, **kwargs)
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/diff_gaussian_rasterization/init.py", line 213, in forward
return rasterize_gaussians(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/diff_gaussian_rasterization/init.py", line 32, in rasterize_gaussians
return _RasterizeGaussians.apply(
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/torch/autograd/function.py", line 598, in apply
return super().apply(*args, **kwargs) # type: ignore[misc]
File "/home/dubaiprince/miniconda3/envs/mvcontrol/lib/python3.9/site-packages/diff_gaussian_rasterization/init.py", line 92, in forward
num_rendered, color, depth, alpha, radii, geomBuffer, binningBuffer, imgBuffer = _C.rasterize_gaussians(*args)
RuntimeError: means3D must have dimensions (num_points, 3)
I successfully launch the exp, but I get this errors, what's the issues
The text was updated successfully, but these errors were encountered: