forked from blei-lab/hlda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtree.py
executable file
·400 lines (315 loc) · 12.6 KB
/
tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#! /usr/bin/python
# how to use this:
#
# docmap = tree.read_jacm_docmap("/Users/blei/data/jacm/current-jacm/jacm-doc.map")
# state = tree.read_state("GOO/mode", vocab, 5)
# tree.add_assignments_to_tree('GOO/mode.assign', state['tree'])
# tree.write_topic_tree_ascii(state, docmap, "GOO.txt")
# tree.write_topic_tree_dot(goo, "GOO.dot", 0, 0)
import sys, re, os, itertools, math
VOCAB = '/Users/blei/data/jacm/002/jacm-vocab.dat'
DOCMAP = '/Users/blei/data/jacm/003/jacm-doc.map'
def doc_sort_key(x, docmap, level):
return(-(x[1] + math.log(docmap[x[0]]['counts'].get(level,1e-5))))
def top_n_words(topic,
vocab,
nwords):
"""
the top n words from a topic
vocab is a map from integers to words
"""
indices = range(len(vocab))
indices.sort(lambda x,y: -cmp(topic[x], topic[y]))
return([vocab[i] for i in indices[0:nwords]])
def compute_level(id, tree):
"""
compute the level of an id in a tree
"""
topic = tree[id]
level = 0
while (id != 0):
level += 1
id = topic['parent']
topic = tree[id]
return(level)
def read_state(state_filename,
vocab,
sig_size):
"""
read the state from an iteration file (e.g., mode)
"""
state = file(state_filename, 'r')
score = float(state.readline().split()[1])
iter = int(state.readline().split()[1])
eta = state.readline().split()
eta = [float(x) for x in eta[1:len(eta)]]
gam = state.readline().split()
gam = [float(x) for x in gam[1:len(gam)]]
gem_mean = float(state.readline().split()[1])
gem_scale = float(state.readline().split()[1])
scaling_shape = float(state.readline().split()[1])
scaling_scale = float(state.readline().split()[1])
header = state.readline()
tree = {}
for line in state:
(id, parent, ndocs, nwords, scale, word_cnt) = line.split(None, 5)
(id, parent, ndocs, nwords) = [int(x) for
x in [id, parent, ndocs, nwords]]
scale = float(scale)
tree[id] = {}
tree[id]['parent'] = parent
if (parent >= 0): tree[parent]['children'].append(id)
tree[id]['nwords'] = nwords
tree[id]['ndocs'] = ndocs
tree[id]['scale'] = scale
topic = [int(x) for x in word_cnt.split()]
tree[id]['top_words'] = top_n_words(topic, vocab, sig_size)
tree[id]['children'] = []
for topic in tree.values():
topic['children'].sort(key=lambda id: -tree[id]['ndocs'])
return({'score':score,
'iter':iter,
'gam':gam,
'eta':eta,
'gem_mean':gem_mean,
'gem_scale':gem_scale,
'scaling_shape':scaling_shape,
'scaling_scale':scaling_scale,
'tree':tree})
def add_assignments_to_tree(filename, tree):
"""
reads an iter.assign file and adds document IDs to the leaf
topics. with a doc-map, we can associate titles with topics
"""
for line in file(filename, 'r'):
(doc_id, score, path) = line.split(None, 2)
doc_id = int(doc_id)
score = float(score)
path = [int(x) for x in path.split()]
for topic in path:
tree[topic].setdefault('docs', []).append((doc_id, score))
def add_state_to_dmap(name, vocab, dmap):
"""
read the level assignments '<ITER>.levels'
and the topic assignments '<ITER>.assign'
and adds them to the document map
(note: vocab is a mapping from numbers to vocabulary words)
"""
dnum = 0
for (levels, topics) in itertools.izip(file(name+'.levels'),
file(name+'.assign')):
(id, score, path) = topics.split(None, 2)
id = int(id)
dmap[id]['score'] = float(score)
dmap[id]['path'] = [int(c) for c in path.split()]
zvars = {}
counts = {}
items = levels.split()
for item in items:
(word, level) = [int(x) for x in item.split(':')]
counts[level] = counts.get(level, 0) + 1
zvars.setdefault(vocab[word], []).append(level)
dmap[id]['levels'] = zvars
dmap[id]['counts'] = counts
def read_vocab_map(vocab_file):
"""
given a vocabulary file, returns a mapping from integers to words.
"""
num = 0
vocab = {}
for word in file(vocab_file):
vocab[num] = word.strip()
num = num + 1
return(vocab)
def read_jacm_docmap(filename):
"""
read the jacm doc-map, which includes the title and abstract
"""
docs = {}
doc_id = 0
for line in file(filename, 'r'):
(bad_doc_id, title, abstract) = [x.replace('"', '') for x in line.split(' "')]
nwords = len(abstract.split())
docs[doc_id] = {'title':title, 'abstract':abstract, 'nwords':nwords}
doc_id += 1
return(docs)
def read_docmap(filename):
"""
read a doc-map, which is assumed to be a list of titles
"""
docs = {}
doc_id = 0
for line in file(filename, 'r'):
docs[doc_id] = {'title':line}
doc_id += 1
return(docs)
def write_docs(docs, tree, outfile):
"""
writes a file with all the doc information
"""
def word_and_level(word, level):
return('%s_%d' % (word, level))
out = file(outfile, 'w')
for doc in docs:
out.write(doc['title'] + '|')
for topic in doc['path']:
out.write(','.join(tree[topic]['top_words'])+'|')
abstract = ' '.join([word_and_level(w, doc['levels'].get(w,[-1])[0])
for w in doc['abstract'].split()])
out.write(abstract+'\n')
out.close()
# write the topic tree with documents
def write_topic_tree_ascii(state,
docmap,
out_filename,
ndocs = -1,
min_ndocs = 0,
include_docs = False):
out = file(out_filename, 'w')
tree = state['tree']
eta = ' '.join(['%1.3e' % x for x in state['eta']])
gam = ' '.join(['%1.3e' % x for x in state['gam']])
out.write('SCORE = %s\n' % str(state['score']))
out.write('ITER = %s\n' % str(state['iter']))
out.write('ETA = %s\n' % eta)
out.write('GAM = %s\n' % gam)
out.write('GEM_MEAN = %s\n' % str(state['gem_mean']))
out.write('GEM_SCALE = %s\n' % str(state['gem_scale']))
out.write('SCALING_SHAPE = %s\n' % str(state['scaling_shape']))
out.write('SCALING_SCALE = %s\n\n' % str(state['scaling_scale']))
max_level = len(state['gam'])
def write_topic(topic, level):
indent = ' ' * level
out.write('%s' % indent)
out.write("[%d/%d/%d]" % (level, topic['nwords'], topic['ndocs']))
# out.write(' %s' % str(topic['scale']))
out.write(' %s\n\n' % ' '.join([x.upper() for x in topic['top_words']]))
if ((level == max_level) and include_docs):
# if ((level > 0) and include_docs):
docs = topic['docs']
if (docmap[0].has_key('counts')):
docs.sort(key=lambda x: doc_sort_key(x, docmap, level))
if (ndocs > -1): docs = docs[0:ndocs]
for (doc, score) in docs:
# !!! this is broken if we don't have the counts
out.write('%s %3.2f %s\n' %
(indent, doc_sort_key([doc,score], docmap, level),
docmap[doc]['title']))
# out.write('%s %3.2f %s\n' %
# (indent, score, docmap[doc]['title']))
if (level == max_level): out.write('\n')
for id in topic['children']:
if ((tree[id]['ndocs'] >= min_ndocs) and
(tree[id]['nwords'] > 0)):
write_topic(tree[id], level + 1)
write_topic(tree[0], 0)
out.close()
# write the topic tree
def write_topic_tree_dot(state,
docmap,
out_filename,
min_ndocs = 2,
ndocs = -1,
join_char='\\n',
include_stats=False,
include_docs=True):
outfile = file(out_filename, 'w')
outfile.write("digraph topic_tree {\n")
outfile.write("node [shape=egg, fontname=Helvetica];\n")
outfile.write("edge [style=bold, arrowhead=dot, arrowsize=1];\n")
outfile.write("graph [mindist=0];\n")
eta = ' '.join(['%1.3e' % x for x in state['eta']])
gamma = ' '.join(['%1.3e' % x for x in state['gam']])
gem_mean = str(state['gem_mean'])
gem_scale = str(state['gem_scale'])
score = str(state['score'])
iter = str(state['iter'])
max_level = len(state['gam'])
outfile.write('params [shape=rectangle, style=bold, color=red,fontcolor=red, fontsize=24, label="ETA = %s\\nGAMMA = %s\\nGEM MEAN = %s\\nGEM SCALE=%s\\nSCORE = %s"]\n' %
(eta, gamma, gem_mean, gem_scale,score))
skip = {}
fontsizes = [24, 18, 12, 9]
id = 0
def write_topic(topic, id, level):
label = join_char.join(topic['top_words'])
if include_stats:
label = '[%d/%d]\\n' % (topic['nwords'],topic['ndocs']) + label
outfile.write('%d [fontsize=%s, label="%s"];\n' %
(id, fontsizes[level], label))
outfile.write('%d -> %d;\n' % (topic['parent'], id))
if ((level == max_level) and include_docs):
docs = topic['docs']
docs.sort(key=lambda x: doc_sort_key(x, docmap, level))
if (ndocs > -1): docs = docs[0:ndocs]
docs_label = join_char.join([docmap[doc[0]]['title']
for doc in docs])
docs_id = '%d' % (id * 10 + 1)
outfile.write('%s [fontsize=9, label="%s"];\n' %
(docs_id, docs_label))
outfile.write('%d -> %s;\n' % (id, docs_id))
children = sorted(topic['children'], key=lambda x: -tree[x]['ndocs'])
for id in children:
if (tree[id]['ndocs'] >= min_ndocs):
write_topic(tree[id], id, level + 1)
tree = state['tree']
write_topic(tree[0], 0, 0)
outfile.write("}")
outfile.close()
# walk down a directory and make both text and dot trees using a
# single vocabulary and dmap.
# tree.make_all_trees('fits/DP-nested/jacm/006/', 'data/jacm/002/jacm-vocab.dat', 'data/jacm/003/jacm-doc.map')
def make_all_trees(dir,
vocab_filename,
dmap_filename,
sig_size=10,
ndocs=-1,
home=os.environ['HOME']):
vocab = map(str.strip, file(home+'/'+vocab_filename, 'r').readlines())
# docmap = read_docmap(dmap_filename)
docmap = read_jacm_docmap(home+'/'+dmap_filename)
walk = os.walk(home+'/'+dir)
max_score = None
argmax_dir = None
for dir, _, files in walk:
files = filter(lambda x: x=='mode', files)
for f in files:
sys.stderr.write('WRITING %s/%s\n' % (dir, f))
filename = dir+'/'+f
state = read_state(filename, vocab, sig_size)
if (state['score'] > max_score):
max_score = state['score']
argmax_dir = dir
add_assignments_to_tree(filename+'.assign', state['tree'])
add_state_to_dmap(filename, vocab, docmap)
txt_tree = dir+'/mode.txt'
dot_tree = dir+'/mode.dot'
write_topic_tree_ascii(state, docmap, txt_tree, ndocs=ndocs)
write_topic_tree_dot(state, docmap, dot_tree, ndocs=10)
sys.stderr.write("BEST RUN = %s\n" % argmax_dir)
# main function
def main(type,
iter_filename,
vocab_filename,
dmap_filename,
out_filename,
sig_size = 5,
ndocs = -1):
vocab = map(str.strip, file(vocab_filename, "r").readlines())
state = read_state(iter_filename, vocab, sig_size)
add_assignments_to_tree(iter_filename+'.assign', state['tree'])
if (type == 'txt'):
if os.path. isfile(dmap_filename):
docmap = read_docmap(dmap_filename)
write_topic_tree_ascii(state, docmap, out_filename, ndocs=ndocs)
else:
write_topic_tree_dot(state, out_filename)
if (__name__ == '__main__'):
if (len(sys.argv) != 6):
sys.stdout.write('usage: python tree.py <txt/dot> <iter> <vocab> <dmap> <out>\n')
sys.exit(1)
type = sys.argv[1]
iter_filename = sys.argv[2]
vocab_filename = sys.argv[3]
dmap_filename = sys.argv[4]
out_filename = sys.argv[5]
main(type, iter_filename, vocab_filename, dmap_filename, out_filename)