-
Notifications
You must be signed in to change notification settings - Fork 451
/
valid.ml
737 lines (597 loc) · 21.3 KB
/
valid.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
open Ast
open Source
open Types
(* Errors *)
module Invalid = Error.Make ()
exception Invalid = Invalid.Error
let error = Invalid.error
let require b at s = if not b then error at s
(* Context *)
type context =
{
types : func_type list;
funcs : func_type list;
tables : table_type list;
memories : memory_type list;
globals : global_type list;
elems : ref_type list;
datas : unit list;
locals : value_type list;
results : value_type list;
labels : result_type list;
refs : Free.t;
}
let empty_context =
{ types = []; funcs = []; tables = []; memories = [];
globals = []; elems = []; datas = [];
locals = []; results = []; labels = [];
refs = Free.empty
}
let lookup category list x =
try Lib.List32.nth list x.it with Failure _ ->
error x.at ("unknown " ^ category ^ " " ^ I32.to_string_u x.it)
let type_ (c : context) x = lookup "type" c.types x
let func (c : context) x = lookup "function" c.funcs x
let table (c : context) x = lookup "table" c.tables x
let memory (c : context) x = lookup "memory" c.memories x
let global (c : context) x = lookup "global" c.globals x
let elem (c : context) x = lookup "elem segment" c.elems x
let data (c : context) x = lookup "data segment" c.datas x
let local (c : context) x = lookup "local" c.locals x
let label (c : context) x = lookup "label" c.labels x
let refer category (s : Free.Set.t) x =
if not (Free.Set.mem x.it s) then
error x.at
("undeclared " ^ category ^ " reference " ^ Int32.to_string x.it)
let refer_func (c : context) x = refer "function" c.refs.Free.funcs x
(* Stack typing *)
(*
* Note: The declarative typing rules are non-deterministic, that is, they
* have the liberty to locally "guess" the right types implied by the context.
* In the algorithmic formulation required here, stack types are hence modelled
* as lists of _options_ of types, where `None` represents a locally
* unknown type. Furthermore, an ellipses flag represents arbitrary sequences
* of unknown types, in order to handle stack polymorphism algorithmically.
*)
type ellipses = NoEllipses | Ellipses
type infer_result_type = ellipses * value_type option list
type op_type = {ins : infer_result_type; outs : infer_result_type}
let known = List.map (fun t -> Some t)
let stack ts = (NoEllipses, known ts)
let (-~>) ts1 ts2 = {ins = NoEllipses, ts1; outs = NoEllipses, ts2}
let (-->) ts1 ts2 = {ins = NoEllipses, known ts1; outs = NoEllipses, known ts2}
let (-~>...) ts1 ts2 = {ins = Ellipses, ts1; outs = Ellipses, ts2}
let (-->...) ts1 ts2 = {ins = Ellipses, known ts1; outs = Ellipses, known ts2}
let string_of_infer_type t =
Lib.Option.get (Lib.Option.map string_of_value_type t) "_"
let string_of_infer_types ts =
"[" ^ String.concat " " (List.map string_of_infer_type ts) ^ "]"
let eq_ty t1 t2 = (t1 = t2 || t1 = None || t2 = None)
let check_stack ts1 ts2 at =
require (List.length ts1 = List.length ts2 && List.for_all2 eq_ty ts1 ts2) at
("type mismatch: instruction requires " ^ string_of_infer_types ts1 ^
" but stack has " ^ string_of_infer_types ts2)
let pop (ell1, ts1) (ell2, ts2) at =
let n1 = List.length ts1 in
let n2 = List.length ts2 in
let n = min n1 n2 in
let n3 = if ell2 = Ellipses then (n1 - n) else 0 in
check_stack ts1 (Lib.List.make n3 None @ Lib.List.drop (n2 - n) ts2) at;
(ell2, if ell1 = Ellipses then [] else Lib.List.take (n2 - n) ts2)
let push (ell1, ts1) (ell2, ts2) =
assert (ell1 = NoEllipses || ts2 = []);
(if ell1 = Ellipses || ell2 = Ellipses then Ellipses else NoEllipses),
ts2 @ ts1
let peek i (ell, ts) =
try List.nth (List.rev ts) i with Failure _ -> None
(* Type Synthesis *)
let type_num = Values.type_of_num
let type_vec = Values.type_of_vec
let type_vec_lane = function
| Values.V128 laneop -> V128.type_of_lane laneop
let type_cvtop at = function
| Values.I32 cvtop ->
let open I32Op in
(match cvtop with
| ExtendSI32 | ExtendUI32 -> error at "invalid conversion"
| WrapI64 -> I64Type
| TruncSF32 | TruncUF32 | TruncSatSF32 | TruncSatUF32
| ReinterpretFloat -> F32Type
| TruncSF64 | TruncUF64 | TruncSatSF64 | TruncSatUF64 -> F64Type
), I32Type
| Values.I64 cvtop ->
let open I64Op in
(match cvtop with
| ExtendSI32 | ExtendUI32 -> I32Type
| WrapI64 -> error at "invalid conversion"
| TruncSF32 | TruncUF32 | TruncSatSF32 | TruncSatUF32 -> F32Type
| TruncSF64 | TruncUF64 | TruncSatSF64 | TruncSatUF64
| ReinterpretFloat -> F64Type
), I64Type
| Values.F32 cvtop ->
let open F32Op in
(match cvtop with
| ConvertSI32 | ConvertUI32 | ReinterpretInt -> I32Type
| ConvertSI64 | ConvertUI64 -> I64Type
| PromoteF32 -> error at "invalid conversion"
| DemoteF64 -> F64Type
), F32Type
| Values.F64 cvtop ->
let open F64Op in
(match cvtop with
| ConvertSI32 | ConvertUI32 -> I32Type
| ConvertSI64 | ConvertUI64 | ReinterpretInt -> I64Type
| PromoteF32 -> F32Type
| DemoteF64 -> error at "invalid conversion"
), F64Type
let num_lanes = function
| Values.V128 laneop -> V128.num_lanes laneop
let lane_extractop = function
| Values.V128 extractop ->
let open V128 in let open V128Op in
match extractop with
| I8x16 (Extract (i, _)) | I16x8 (Extract (i, _))
| I32x4 (Extract (i, _)) | I64x2 (Extract (i, _))
| F32x4 (Extract (i, _)) | F64x2 (Extract (i, _)) -> i
let lane_replaceop = function
| Values.V128 replaceop ->
let open V128 in let open V128Op in
match replaceop with
| I8x16 (Replace i) | I16x8 (Replace i)
| I32x4 (Replace i) | I64x2 (Replace i)
| F32x4 (Replace i) | F64x2 (Replace i) -> i
(* Expressions *)
let check_pack sz t_sz at =
require (packed_size sz < t_sz) at "invalid sign extension"
let check_unop unop at =
match unop with
| Values.I32 (IntOp.ExtendS sz) | Values.I64 (IntOp.ExtendS sz) ->
check_pack sz (num_size (Values.type_of_num unop)) at
| _ -> ()
let check_vec_binop binop at =
match binop with
| Values.(V128 (V128.I8x16 (V128Op.Shuffle is))) ->
if List.exists ((<=) 32) is then
error at "invalid lane index"
| _ -> ()
let check_memop (c : context) (memop : ('t, 's) memop) ty_size get_sz at =
let _mt = memory c (0l @@ at) in
let size =
match get_sz memop.pack with
| None -> ty_size memop.ty
| Some sz ->
check_pack sz (ty_size memop.ty) at;
packed_size sz
in
require (1 lsl memop.align <= size) at
"alignment must not be larger than natural"
(*
* Conventions:
* c : context
* e : instr
* es : instr list
* v : value
* t : value_type var
* ts : result_type
* x : variable
*
* Note: To deal with the non-determinism in some of the declarative rules,
* the function takes the current stack `s` as an additional argument, allowing
* it to "peek" when it would otherwise have to guess an input type.
*
* Furthermore, stack-polymorphic types are given with the `-->...` operator:
* a type `ts1 -->... ts2` expresses any type `(ts1' @ ts1) -> (ts2' @ ts2)`
* where `ts1'` and `ts2'` would be chosen non-deterministically in the
* declarative typing rules.
*)
let check_block_type (c : context) (bt : block_type) : func_type =
match bt with
| VarBlockType x -> type_ c x
| ValBlockType None -> FuncType ([], [])
| ValBlockType (Some t) -> FuncType ([], [t])
let rec check_instr (c : context) (e : instr) (s : infer_result_type) : op_type =
match e.it with
| Unreachable ->
[] -->... []
| Nop ->
[] --> []
| Drop ->
[peek 0 s] -~> []
| Select None ->
let t = peek 1 s in
require (match t with None -> true | Some t -> is_num_type t || is_vec_type t) e.at
("type mismatch: instruction requires numeric or vector type" ^
" but stack has " ^ string_of_infer_type t);
[t; t; Some (NumType I32Type)] -~> [t]
| Select (Some ts) ->
require (List.length ts = 1) e.at
"invalid result arity other than 1 is not (yet) allowed";
(ts @ ts @ [NumType I32Type]) --> ts
| Block (bt, es) ->
let FuncType (ts1, ts2) as ft = check_block_type c bt in
check_block {c with labels = ts2 :: c.labels} es ft e.at;
ts1 --> ts2
| Loop (bt, es) ->
let FuncType (ts1, ts2) as ft = check_block_type c bt in
check_block {c with labels = ts1 :: c.labels} es ft e.at;
ts1 --> ts2
| If (bt, es1, es2) ->
let FuncType (ts1, ts2) as ft = check_block_type c bt in
check_block {c with labels = ts2 :: c.labels} es1 ft e.at;
check_block {c with labels = ts2 :: c.labels} es2 ft e.at;
(ts1 @ [NumType I32Type]) --> ts2
| Br x ->
label c x -->... []
| BrIf x ->
(label c x @ [NumType I32Type]) --> label c x
| BrTable (xs, x) ->
let n = List.length (label c x) in
let ts = Lib.List.table n (fun i -> peek (n - i) s) in
check_stack ts (known (label c x)) x.at;
List.iter (fun x' -> check_stack ts (known (label c x')) x'.at) xs;
(ts @ [Some (NumType I32Type)]) -~>... []
| Return ->
c.results -->... []
| Call x ->
let FuncType (ts1, ts2) = func c x in
ts1 --> ts2
| CallIndirect (x, y) ->
let TableType (lim, t) = table c x in
let FuncType (ts1, ts2) = type_ c y in
require (t = FuncRefType) x.at
("type mismatch: instruction requires table of functions" ^
" but table has " ^ string_of_ref_type t);
(ts1 @ [NumType I32Type]) --> ts2
| LocalGet x ->
[] --> [local c x]
| LocalSet x ->
[local c x] --> []
| LocalTee x ->
[local c x] --> [local c x]
| GlobalGet x ->
let GlobalType (t, _mut) = global c x in
[] --> [t]
| GlobalSet x ->
let GlobalType (t, mut) = global c x in
require (mut = Mutable) x.at "global is immutable";
[t] --> []
| TableGet x ->
let TableType (_lim, t) = table c x in
[NumType I32Type] --> [RefType t]
| TableSet x ->
let TableType (_lim, t) = table c x in
[NumType I32Type; RefType t] --> []
| TableSize x ->
let _tt = table c x in
[] --> [NumType I32Type]
| TableGrow x ->
let TableType (_lim, t) = table c x in
[RefType t; NumType I32Type] --> [NumType I32Type]
| TableFill x ->
let TableType (_lim, t) = table c x in
[NumType I32Type; RefType t; NumType I32Type] --> []
| TableCopy (x, y) ->
let TableType (_lim1, t1) = table c x in
let TableType (_lim2, t2) = table c y in
require (t1 = t2) x.at
("type mismatch: source element type " ^ string_of_ref_type t1 ^
" does not match destination element type " ^ string_of_ref_type t2);
[NumType I32Type; NumType I32Type; NumType I32Type] --> []
| TableInit (x, y) ->
let TableType (_lim1, t1) = table c x in
let t2 = elem c y in
require (t1 = t2) x.at
("type mismatch: element segment's type " ^ string_of_ref_type t1 ^
" does not match table's element type " ^ string_of_ref_type t2);
[NumType I32Type; NumType I32Type; NumType I32Type] --> []
| ElemDrop x ->
ignore (elem c x);
[] --> []
| Load memop ->
check_memop c memop num_size (Lib.Option.map fst) e.at;
[NumType I32Type] --> [NumType memop.ty]
| Store memop ->
check_memop c memop num_size (fun sz -> sz) e.at;
[NumType I32Type; NumType memop.ty] --> []
| VecLoad memop ->
check_memop c memop vec_size (Lib.Option.map fst) e.at;
[NumType I32Type] --> [VecType memop.ty]
| VecStore memop ->
check_memop c memop vec_size (fun _ -> None) e.at;
[NumType I32Type; VecType memop.ty] --> []
| VecLoadLane (memop, i) ->
check_memop c memop vec_size (fun sz -> Some sz) e.at;
require (i < vec_size memop.ty / packed_size memop.pack) e.at
"invalid lane index";
[NumType I32Type; VecType memop.ty] --> [VecType memop.ty]
| VecStoreLane (memop, i) ->
check_memop c memop vec_size (fun sz -> Some sz) e.at;
require (i < vec_size memop.ty / packed_size memop.pack) e.at
"invalid lane index";
[NumType I32Type; VecType memop.ty] --> []
| MemorySize ->
let _mt = memory c (0l @@ e.at) in
[] --> [NumType I32Type]
| MemoryGrow ->
let _mt = memory c (0l @@ e.at) in
[NumType I32Type] --> [NumType I32Type]
| MemoryFill ->
ignore (memory c (0l @@ e.at));
[NumType I32Type; NumType I32Type; NumType I32Type] --> []
| MemoryCopy ->
ignore (memory c (0l @@ e.at));
[NumType I32Type; NumType I32Type; NumType I32Type] --> []
| MemoryInit x ->
ignore (memory c (0l @@ e.at));
ignore (data c x);
[NumType I32Type; NumType I32Type; NumType I32Type] --> []
| DataDrop x ->
ignore (data c x);
[] --> []
| RefNull t ->
[] --> [RefType t]
| RefIsNull ->
let t = peek 0 s in
require (match t with None -> true | Some t -> is_ref_type t) e.at
("type mismatch: instruction requires reference type" ^
" but stack has " ^ string_of_infer_type t);
[t] -~> [Some (NumType I32Type)]
| RefFunc x ->
let _ft = func c x in
refer_func c x;
[] --> [RefType FuncRefType]
| Const v ->
let t = NumType (type_num v.it) in
[] --> [t]
| Test testop ->
let t = NumType (type_num testop) in
[t] --> [NumType I32Type]
| Compare relop ->
let t = NumType (type_num relop) in
[t; t] --> [NumType I32Type]
| Unary unop ->
check_unop unop e.at;
let t = NumType (type_num unop) in
[t] --> [t]
| Binary binop ->
let t = NumType (type_num binop) in
[t; t] --> [t]
| Convert cvtop ->
let t1, t2 = type_cvtop e.at cvtop in
[NumType t1] --> [NumType t2]
| VecConst v ->
let t = VecType (type_vec v.it) in
[] --> [t]
| VecTest testop ->
let t = VecType (type_vec testop) in
[t] --> [NumType I32Type]
| VecUnary unop ->
let t = VecType (type_vec unop) in
[t] --> [t]
| VecBinary binop ->
check_vec_binop binop e.at;
let t = VecType (type_vec binop) in
[t; t] --> [t]
| VecCompare relop ->
let t = VecType (type_vec relop) in
[t; t] --> [t]
| VecConvert cvtop ->
let t = VecType (type_vec cvtop) in
[t] --> [t]
| VecShift shiftop ->
let t = VecType (type_vec shiftop) in
[t; NumType I32Type] --> [VecType V128Type]
| VecBitmask bitmaskop ->
let t = VecType (type_vec bitmaskop) in
[t] --> [NumType I32Type]
| VecTestBits vtestop ->
let t = VecType (type_vec vtestop) in
[t] --> [NumType I32Type]
| VecUnaryBits vunop ->
let t = VecType (type_vec vunop) in
[t] --> [t]
| VecBinaryBits vbinop ->
let t = VecType (type_vec vbinop) in
[t; t] --> [t]
| VecTernaryBits vternop ->
let t = VecType (type_vec vternop) in
[t; t; t] --> [t]
| VecSplat splatop ->
let t1 = type_vec_lane splatop in
let t2 = VecType (type_vec splatop) in
[NumType t1] --> [t2]
| VecExtract extractop ->
let t = VecType (type_vec extractop) in
let t2 = type_vec_lane extractop in
require (lane_extractop extractop < num_lanes extractop) e.at
"invalid lane index";
[t] --> [NumType t2]
| VecReplace replaceop ->
let t = VecType (type_vec replaceop) in
let t2 = type_vec_lane replaceop in
require (lane_replaceop replaceop < num_lanes replaceop) e.at
"invalid lane index";
[t; NumType t2] --> [t]
and check_seq (c : context) (s : infer_result_type) (es : instr list)
: infer_result_type =
match es with
| [] ->
s
| _ ->
let es', e = Lib.List.split_last es in
let s' = check_seq c s es' in
let {ins; outs} = check_instr c e s' in
push outs (pop ins s' e.at)
and check_block (c : context) (es : instr list) (ft : func_type) at =
let FuncType (ts1, ts2) = ft in
let s = check_seq c (stack ts1) es in
let s' = pop (stack ts2) s at in
require (snd s' = []) at
("type mismatch: block requires " ^ string_of_result_type ts2 ^
" but stack has " ^ string_of_infer_types (snd s))
(* Types *)
let check_limits {min; max} range at msg =
require (I32.le_u min range) at msg;
match max with
| None -> ()
| Some max ->
require (I32.le_u max range) at msg;
require (I32.le_u min max) at
"size minimum must not be greater than maximum"
let check_num_type (t : num_type) at =
()
let check_vec_type (t : vec_type) at =
()
let check_ref_type (t : ref_type) at =
()
let check_value_type (t : value_type) at =
match t with
| NumType t' -> check_num_type t' at
| VecType t' -> check_vec_type t' at
| RefType t' -> check_ref_type t' at
let check_func_type (ft : func_type) at =
let FuncType (ts1, ts2) = ft in
List.iter (fun t -> check_value_type t at) ts1;
List.iter (fun t -> check_value_type t at) ts2
let check_table_type (tt : table_type) at =
let TableType (lim, t) = tt in
check_limits lim 0xffff_ffffl at "table size must be at most 2^32-1";
check_ref_type t at
let check_memory_type (mt : memory_type) at =
let MemoryType lim = mt in
check_limits lim 0x1_0000l at
"memory size must be at most 65536 pages (4GiB)"
let check_global_type (gt : global_type) at =
let GlobalType (t, mut) = gt in
check_value_type t at
let check_type (t : type_) =
check_func_type t.it t.at
(* Functions & Constants *)
(*
* Conventions:
* c : context
* m : module_
* f : func
* e : instr
* v : value
* t : value_type
* s : func_type
* x : variable
*)
let check_func (c : context) (f : func) =
let {ftype; locals; body} = f.it in
let FuncType (ts1, ts2) = type_ c ftype in
let c' = {c with locals = ts1 @ locals; results = ts2; labels = [ts2]} in
check_block c' body (FuncType ([], ts2)) f.at
let is_const (c : context) (e : instr) =
match e.it with
| RefNull _
| RefFunc _
| Const _
| VecConst _ -> true
| GlobalGet x -> let GlobalType (_, mut) = global c x in mut = Immutable
| _ -> false
let check_const (c : context) (const : const) (t : value_type) =
require (List.for_all (is_const c) const.it) const.at
"constant expression required";
check_block c const.it (FuncType ([], [t])) const.at
(* Tables, Memories, & Globals *)
let check_table (c : context) (tab : table) =
let {ttype} = tab.it in
check_table_type ttype tab.at
let check_memory (c : context) (mem : memory) =
let {mtype} = mem.it in
check_memory_type mtype mem.at
let check_elem_mode (c : context) (t : ref_type) (mode : segment_mode) =
match mode.it with
| Passive -> ()
| Active {index; offset} ->
let TableType (_, et) = table c index in
require (t = et) mode.at
("type mismatch: element segment's type " ^ string_of_ref_type t ^
" does not match table's element type " ^ string_of_ref_type et);
check_const c offset (NumType I32Type)
| Declarative -> ()
let check_elem (c : context) (seg : elem_segment) =
let {etype; einit; emode} = seg.it in
List.iter (fun const -> check_const c const (RefType etype)) einit;
check_elem_mode c etype emode
let check_data_mode (c : context) (mode : segment_mode) =
match mode.it with
| Passive -> ()
| Active {index; offset} ->
ignore (memory c index);
check_const c offset (NumType I32Type)
| Declarative -> assert false
let check_data (c : context) (seg : data_segment) =
let {dinit; dmode} = seg.it in
check_data_mode c dmode
let check_global (c : context) (glob : global) =
let {gtype; ginit} = glob.it in
let GlobalType (t, mut) = gtype in
check_const c ginit t
(* Modules *)
let check_start (c : context) (start : start) =
let {sfunc} = start.it in
require (func c sfunc = FuncType ([], [])) start.at
"start function must not have parameters or results"
let check_import (im : import) (c : context) : context =
let {module_name = _; item_name = _; idesc} = im.it in
match idesc.it with
| FuncImport x ->
{c with funcs = type_ c x :: c.funcs}
| TableImport tt ->
check_table_type tt idesc.at;
{c with tables = tt :: c.tables}
| MemoryImport mt ->
check_memory_type mt idesc.at;
{c with memories = mt :: c.memories}
| GlobalImport gt ->
check_global_type gt idesc.at;
{c with globals = gt :: c.globals}
module NameSet = Set.Make(struct type t = Ast.name let compare = compare end)
let check_export (c : context) (set : NameSet.t) (ex : export) : NameSet.t =
let {name; edesc} = ex.it in
(match edesc.it with
| FuncExport x -> ignore (func c x)
| TableExport x -> ignore (table c x)
| MemoryExport x -> ignore (memory c x)
| GlobalExport x -> ignore (global c x)
);
require (not (NameSet.mem name set)) ex.at "duplicate export name";
NameSet.add name set
let check_module (m : module_) =
let
{ types; imports; tables; memories; globals; funcs; start; elems; datas;
exports } = m.it
in
let c0 =
List.fold_right check_import imports
{ empty_context with
refs = Free.module_ ({m.it with funcs = []; start = None} @@ m.at);
types = List.map (fun ty -> ty.it) types;
}
in
let c1 =
{ c0 with
funcs = c0.funcs @ List.map (fun f -> type_ c0 f.it.ftype) funcs;
tables = c0.tables @ List.map (fun tab -> tab.it.ttype) tables;
memories = c0.memories @ List.map (fun mem -> mem.it.mtype) memories;
elems = List.map (fun elem -> elem.it.etype) elems;
datas = List.map (fun _data -> ()) datas;
}
in
let c =
{ c1 with globals = c1.globals @ List.map (fun g -> g.it.gtype) globals }
in
List.iter check_type types;
List.iter (check_global c1) globals;
List.iter (check_table c1) tables;
List.iter (check_memory c1) memories;
List.iter (check_elem c1) elems;
List.iter (check_data c1) datas;
List.iter (check_func c) funcs;
Lib.Option.app (check_start c) start;
ignore (List.fold_left (check_export c) NameSet.empty exports);
require (List.length c.memories <= 1) m.at
"multiple memories are not allowed (yet)"