-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata.py
60 lines (44 loc) · 1.69 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from __future__ import division
from torch.utils.data import Dataset
import numpy as np
class DataHelper(Dataset):
def __init__(self, edge_index, args, directed=False, transform=None):
# self.num_nodes = len(node_list)
self.transform = transform
self.degrees = dict()
self.node_set = set()
self.neighs = dict()
self.args = args
idx, degree = np.unique(edge_index, return_counts=True)
for i in range(idx.shape[0]):
self.degrees[idx[i]] = degree[i].item()
self.node_dim = idx.shape[0]
print('lenth of dataset', self.node_dim)
train_edge_index = edge_index
self.final_edge_index = train_edge_index.T
for i in range(self.final_edge_index.shape[0]):
s_node = self.final_edge_index[i][0].item()
t_node = self.final_edge_index[i][1].item()
if s_node not in self.neighs:
self.neighs[s_node] = []
if t_node not in self.neighs:
self.neighs[t_node] = []
self.neighs[s_node].append(t_node)
if not directed:
self.neighs[t_node].append(s_node)
# self.neighs = sorted(self.neighs)
self.idx = idx
def __len__(self):
return self.node_dim
def __getitem__(self, idx):
s_n = self.idx[idx].item()
t_n = [np.random.choice(self.neighs[s_n], replace=True).item() for _ in range(self.args.neigh_num)]
t_n = np.array(t_n)
sample = {
's_n': s_n, # e.g., 5424
't_n': t_n, # e.g., 5427
# 'neg_n': neg_n
}
if self.transform:
sample = self.transform(sample)
return sample