-
Notifications
You must be signed in to change notification settings - Fork 55
/
convert.py
154 lines (131 loc) · 5.4 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import hydra
import hydra.utils as utils
from pathlib import Path
import torch
import numpy as np
from tqdm import tqdm
import soundfile as sf
from model_encoder import Encoder, Encoder_lf0
from model_decoder import Decoder_ac
from model_encoder import SpeakerEncoder as Encoder_spk
import os
import random
from glob import glob
import subprocess
from spectrogram import logmelspectrogram
import kaldiio
import resampy
import pyworld as pw
def select_wavs(paths, min_dur=2, max_dur=8):
pp = []
for p in paths:
x, fs = sf.read(p)
if len(x)/fs>=min_dur and len(x)/fs<=8:
pp.append(p)
return pp
def extract_logmel(wav_path, mean, std, sr=16000):
# wav, fs = librosa.load(wav_path, sr=sr)
wav, fs = sf.read(wav_path)
if fs != sr:
wav = resampy.resample(wav, fs, sr, axis=0)
fs = sr
#wav, _ = librosa.effects.trim(wav, top_db=15)
# duration = len(wav)/fs
assert fs == 16000
peak = np.abs(wav).max()
if peak > 1.0:
wav /= peak
mel = logmelspectrogram(
x=wav,
fs=fs,
n_mels=80,
n_fft=400,
n_shift=160,
win_length=400,
window='hann',
fmin=80,
fmax=7600,
)
mel = (mel - mean) / (std + 1e-8)
tlen = mel.shape[0]
frame_period = 160/fs*1000
f0, timeaxis = pw.dio(wav.astype('float64'), fs, frame_period=frame_period)
f0 = pw.stonemask(wav.astype('float64'), f0, timeaxis, fs)
f0 = f0[:tlen].reshape(-1).astype('float32')
nonzeros_indices = np.nonzero(f0)
lf0 = f0.copy()
lf0[nonzeros_indices] = np.log(f0[nonzeros_indices]) # for f0(Hz), lf0 > 0 when f0 != 0
mean, std = np.mean(lf0[nonzeros_indices]), np.std(lf0[nonzeros_indices])
lf0[nonzeros_indices] = (lf0[nonzeros_indices] - mean) / (std + 1e-8)
return mel, lf0
@hydra.main(config_path="config/convert.yaml")
def convert(cfg):
src_wav_paths = glob('/Dataset/VCTK-Corpus/wav48_silence_trimmed/p225/*mic1.flac') # modified to absolute wavs path, can select any unseen speakers
src_wav_paths = select_wavs(src_wav_paths)
tar1_wav_paths = glob('/Dataset/VCTK-Corpus/wav48_silence_trimmed/p231/*mic1.flac') # can select any unseen speakers
tar2_wav_paths = glob('/Dataset/VCTK-Corpus/wav48_silence_trimmed/p243/*mic1.flac') # can select any unseen speakers
# tar1_wav_paths = select_wavs(tar1_wav_paths)
# tar2_wav_paths = select_wavs(tar2_wav_paths)
tar1_wav_paths = [sorted(tar1_wav_paths)[0]]
tar2_wav_paths = [sorted(tar2_wav_paths)[0]]
print('len(src):', len(src_wav_paths), 'len(tar1):', len(tar1_wav_paths), 'len(tar2):', len(tar2_wav_paths))
tmp = cfg.checkpoint.split('/')
steps = tmp[-1].split('-')[-1].split('.')[0]
out_dir = f'test/{tmp[-3]}-{tmp[-2]}-{steps}'
out_dir = Path(utils.to_absolute_path(out_dir))
out_dir.mkdir(exist_ok=True, parents=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
encoder = Encoder(**cfg.model.encoder)
encoder_lf0 = Encoder_lf0()
encoder_spk = Encoder_spk()
decoder = Decoder_ac(dim_neck=64)
encoder.to(device)
encoder_lf0.to(device)
encoder_spk.to(device)
decoder.to(device)
print("Load checkpoint from: {}:".format(cfg.checkpoint))
checkpoint_path = utils.to_absolute_path(cfg.checkpoint)
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
encoder.load_state_dict(checkpoint["encoder"])
encoder_spk.load_state_dict(checkpoint["encoder_spk"])
decoder.load_state_dict(checkpoint["decoder"])
encoder.eval()
encoder_spk.eval()
decoder.eval()
mel_stats = np.load('./data/mel_stats.npy')
mean = mel_stats[0]
std = mel_stats[1]
feat_writer = kaldiio.WriteHelper("ark,scp:{o}.ark,{o}.scp".format(o=str(out_dir)+'/feats.1'))
for i, src_wav_path in tqdm(enumerate(src_wav_paths, 1)):
if i>10:
break
mel, lf0 = extract_logmel(src_wav_path, mean, std)
if i % 2 == 1:
ref_wav_path = random.choice(tar2_wav_paths)
tar = 'tarMale_'
else:
ref_wav_path = random.choice(tar1_wav_paths)
tar = 'tarFemale_'
ref_mel, _ = extract_logmel(ref_wav_path, mean, std)
mel = torch.FloatTensor(mel.T).unsqueeze(0).to(device)
lf0 = torch.FloatTensor(lf0).unsqueeze(0).to(device)
ref_mel = torch.FloatTensor(ref_mel.T).unsqueeze(0).to(device)
out_filename = os.path.basename(src_wav_path).split('.')[0]
with torch.no_grad():
z, _, _, _ = encoder.encode(mel)
lf0_embs = encoder_lf0(lf0)
spk_embs = encoder_spk(ref_mel)
output = decoder(z, lf0_embs, spk_embs)
logmel = output.squeeze(0).cpu().numpy()
feat_writer[out_filename] = logmel
feat_writer[out_filename+'_src'] = mel.squeeze(0).cpu().numpy().T
feat_writer[out_filename+'_ref'] = ref_mel.squeeze(0).cpu().numpy().T
subprocess.call(['cp', src_wav_path, out_dir])
feat_writer.close()
print('synthesize waveform...')
cmd = ['parallel-wavegan-decode', '--checkpoint', \
'/vocoder/checkpoint-3000000steps.pkl', \
'--feats-scp', f'{str(out_dir)}/feats.1.scp', '--outdir', str(out_dir)]
subprocess.call(cmd)
if __name__ == "__main__":
convert()