-
Notifications
You must be signed in to change notification settings - Fork 55
/
predict.py
148 lines (131 loc) · 4.81 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import json
import os
import subprocess
import tempfile
import zipfile
from cog import BasePredictor, Input, Path
import kaldiio
import numpy as np
import pyworld as pw
import resampy
import soundfile as sf
import torch
from model_decoder import Decoder_ac
from model_encoder import Encoder, Encoder_lf0
from model_encoder import SpeakerEncoder as Encoder_spk
from spectrogram import logmelspectrogram
def extract_logmel(wav_path, mean, std, sr=16000):
# wav, fs = librosa.load(wav_path, sr=sr)
wav, fs = sf.read(wav_path)
if fs != sr:
wav = resampy.resample(wav, fs, sr, axis=0)
fs = sr
# wav, _ = librosa.effects.trim(wav, top_db=15)
# duration = len(wav)/fs
assert fs == 16000
peak = np.abs(wav).max()
if peak > 1.0:
wav /= peak
mel = logmelspectrogram(
x=wav,
fs=fs,
n_mels=80,
n_fft=400,
n_shift=160,
win_length=400,
window="hann",
fmin=80,
fmax=7600,
)
mel = (mel - mean) / (std + 1e-8)
tlen = mel.shape[0]
frame_period = 160 / fs * 1000
f0, timeaxis = pw.dio(wav.astype("float64"), fs, frame_period=frame_period)
f0 = pw.stonemask(wav.astype("float64"), f0, timeaxis, fs)
f0 = f0[:tlen].reshape(-1).astype("float32")
nonzeros_indices = np.nonzero(f0)
lf0 = f0.copy()
lf0[nonzeros_indices] = np.log(
f0[nonzeros_indices]
) # for f0(Hz), lf0 > 0 when f0 != 0
mean, std = np.mean(lf0[nonzeros_indices]), np.std(lf0[nonzeros_indices])
lf0[nonzeros_indices] = (lf0[nonzeros_indices] - mean) / (std + 1e-8)
return mel, lf0
class Predictor(BasePredictor):
def setup(self):
"""Load models"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
checkpoint_path = "VQMIVC-pretrained models/checkpoints/useCSMITrue_useCPMITrue_usePSMITrue_useAmpTrue/VQMIVC-model.ckpt-500.pt"
mel_stats = np.load("./mel_stats/stats.npy")
encoder = Encoder(
in_channels=80, channels=512, n_embeddings=512, z_dim=64, c_dim=256
)
encoder_lf0 = Encoder_lf0()
encoder_spk = Encoder_spk()
decoder = Decoder_ac(dim_neck=64)
encoder.to(device)
encoder_lf0.to(device)
encoder_spk.to(device)
decoder.to(device)
checkpoint = torch.load(
checkpoint_path, map_location=lambda storage, loc: storage
)
encoder.load_state_dict(checkpoint["encoder"])
encoder_spk.load_state_dict(checkpoint["encoder_spk"])
decoder.load_state_dict(checkpoint["decoder"])
encoder.eval()
encoder_spk.eval()
decoder.eval()
self.mean = mel_stats[0]
self.std = mel_stats[1]
self.encoder = encoder
self.encoder_spk = encoder_spk
self.encoder_lf0 = encoder_lf0
self.decoder = decoder
self.device = device
def predict(
self,
input_source: Path = Input(description="Source voice wav path"),
input_reference: Path = Input(description="Reference voice wav path"),
) -> Path:
"""Compute prediction"""
# inference
out_dir = Path(tempfile.mkdtemp())
out_path = out_dir / Path(
os.path.basename(str(input_source)).split(".")[0] + "_converted_gen.wav"
)
src_wav_path = input_source
ref_wav_path = input_reference
feat_writer = kaldiio.WriteHelper(
"ark,scp:{o}.ark,{o}.scp".format(o=str(out_dir) + "/feats.1")
)
src_mel, src_lf0 = extract_logmel(src_wav_path, self.mean, self.std)
ref_mel, _ = extract_logmel(ref_wav_path, self.mean, self.std)
src_mel = torch.FloatTensor(src_mel.T).unsqueeze(0).to(self.device)
src_lf0 = torch.FloatTensor(src_lf0).unsqueeze(0).to(self.device)
ref_mel = torch.FloatTensor(ref_mel.T).unsqueeze(0).to(self.device)
out_filename = os.path.basename(src_wav_path).split(".")[0]
with torch.no_grad():
z, _, _, _ = self.encoder.encode(src_mel)
lf0_embs = self.encoder_lf0(src_lf0)
spk_emb = self.encoder_spk(ref_mel)
output = self.decoder(z, lf0_embs, spk_emb)
feat_writer[out_filename + "_converted"] = output.squeeze(0).cpu().numpy()
feat_writer[out_filename + "_source"] = src_mel.squeeze(0).cpu().numpy().T
feat_writer[out_filename + "_reference"] = (
ref_mel.squeeze(0).cpu().numpy().T
)
feat_writer.close()
print("synthesize waveform...")
cmd = [
"parallel-wavegan-decode",
"--checkpoint",
"./vocoder/checkpoint-3000000steps.pkl",
"--feats-scp",
f"{str(out_dir)}/feats.1.scp",
"--outdir",
str(out_dir),
]
subprocess.call(cmd)
return out_path