Skip to content

Commit

Permalink
Merge pull request #27 from WenjieDu/dev
Browse files Browse the repository at this point in the history
Updating the docs
  • Loading branch information
WenjieDu authored Aug 8, 2023
2 parents b31bb2b + 8520fb5 commit 755dfef
Show file tree
Hide file tree
Showing 6 changed files with 34 additions and 439 deletions.
3 changes: 1 addition & 2 deletions .github/workflows/linting.yml
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@ on:
- dev
pull_request:
branches:
- main
- dev

jobs:
Expand All @@ -28,4 +27,4 @@ jobs:
- name: Run linting
run: |
flake8 .
flake8 .
14 changes: 7 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
<a href='https://github.com/WenjieDu/TSDB'><img src="https://raw.githubusercontent.com/WenjieDu/TSDB/main/docs/_static/figs/TSDB_logo.svg?sanitize=true" align='right' width='235'/></a>
<a href='https://github.com/WenjieDu/TSDB'><img src="https://raw.githubusercontent.com/PyPOTS/pypots.github.io/main/static/figs/pypots_logos/TSDB_logo_FFBG.svg?sanitize=truee" align='right' width='235'/></a>

# <p align='center'>Welcome to TSDB</p>
**<p align='center'>A Python Toolbox to Ease Loading Open-Source Time-Series Datasets</p>**
Expand All @@ -15,14 +15,14 @@
<img alt="GPL-v3 license" src="https://img.shields.io/badge/License-GPL--v3-E9BB41">
</a>
<!-- GitHub Testing -->
<a alt='GitHub Testing' href='https://github.com/WenjieDu/TSDB/actions/workflows/testing_ci.yml'>
<a alt='GitHub Testing' href='https://github.com/WenjieDu/TSDB/actions/workflows/testing_ci.yml'>
<img src='https://img.shields.io/github/actions/workflow/status/wenjiedu/tsdb/testing_ci.yml?logo=github&color=C8D8E1&label=CI'>
</a>
<a href="https://codeclimate.com/github/WenjieDu/TSDB">
<img alt="Code Climate maintainability" src="https://img.shields.io/codeclimate/maintainability-percentage/WenjieDu/TSDB?color=3C7699&label=Maintainability&logo=codeclimate">
</a>
<!-- Coveralls report -->
<a alt='Coveralls report' href='https://coveralls.io/github/WenjieDu/TSDB'>
<a alt='Coveralls report' href='https://coveralls.io/github/WenjieDu/TSDB'>
<img src='https://img.shields.io/coverallsCoverage/github/WenjieDu/TSDB?branch=main&logo=coveralls&color=75C1C4&label=Coverage'>
</a>
<a href="https://anaconda.org/conda-forge/tsdb">
Expand All @@ -36,7 +36,7 @@

> 📣 TSDB now supports a total of 1️⃣6️⃣8️⃣ time-series datasets ‼️
<a href='https://github.com/WenjieDu/PyPOTS'><img src='https://raw.githubusercontent.com/WenjieDu/PyPOTS/main/docs/_static/figs/PyPOTS_logo.svg?sanitize=true' width='160' align='left' /></a>
<a href='https://github.com/WenjieDu/PyPOTS'><img src='https://raw.githubusercontent.com/PyPOTS/pypots.github.io/main/static/figs/pypots_logos/PyPOTS_logo_FFBG.svg?sanitize=true' width='160' align='left' /></a>
TSDB is a part of [PyPOTS project](https://github.com/WenjieDu/PyPOTS) (a Python toolbox for data mining on Partially-Observed Time Series), and was separated from PyPOTS for decoupling datasets from learning algorithms.

TSDB is created to help researchers and engineers get rid of data collecting and downloading, and focus back on data processing details. TSDB provides all-in-one-stop convenience for downloading and loading open-source time-series datasets (available datasets listed [below](https://github.com/WenjieDu/TSDB#-list-of-available-datasets)).
Expand All @@ -51,7 +51,7 @@ if it helps with your research. This really means a lot to our open-source resea


## ❖ Usage Examples
TSDB now is available on <a alt='Anaconda' href='https://anaconda.org/conda-forge/tsdb'><img align='center' src='https://img.shields.io/badge/Anaconda--lightgreen?style=social&logo=anaconda'></a>❗️
TSDB now is available on <a alt='Anaconda' href='https://anaconda.org/conda-forge/tsdb'><img align='center' src='https://img.shields.io/badge/Anaconda--lightgreen?style=social&logo=anaconda'></a>❗️

Install it with `conda install tsdb`, you may need to specify the channel with option `-c conda-forge`

Expand All @@ -68,8 +68,8 @@ tsdb.list_available_datasets() # list all available datasets in TSDB
data = tsdb.load_dataset('physionet_2012') # select the dataset you need and load it, TSDB will download, extract, and process it automatically
tsdb.download_and_extract('physionet_2012', './save_it_here') # if you need the raw data, use download_and_extract()
tsdb.list_cached_data() # datasets you once loaded are cached, and you can check them with list_cached_data()
tsdb.delete_cached_data() # you can delete all cache with delete_cached_data() to free disk space
tsdb.delete_cached_data(dataset_name='physionet_2012') # or you can delete only one specific dataset and preserve others
tsdb.delete_cached_data(dataset_name='physionet_2012') # you can delete only one specific dataset and preserve others
tsdb.delete_cached_data() # or you can delete all cache with delete_cached_data() to free disk space
```

That's all. Simple and efficient. Enjoy it! 😃
Expand Down
405 changes: 0 additions & 405 deletions docs/_static/figs/TSDB_logo.svg

This file was deleted.

6 changes: 4 additions & 2 deletions docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,6 @@
bibtex_bibfiles = ["references.bib"]
bibtex_default_style = "unsrt"


# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]

Expand All @@ -91,7 +90,10 @@
"last_updated": f"{date_now.year}/{date_now.month}/{date_now.day}",
}

# html_favicon = "_static/figs/PyPOTS_logo.svg"
html_favicon = (
"https://raw.githubusercontent.com/"
"PyPOTS/pypots.github.io/main/static/figs/pypots_logos/PyPOTS_logo_FFBG.svg"
)

html_sidebars = {
"**": [
Expand Down
43 changes: 21 additions & 22 deletions docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
Welcome to TSDB documentation!
================================
.. image:: https://raw.githubusercontent.com/WenjieDu/TSDB/main/docs/_static/figs/TSDB_logo.svg?sanitize=true
.. image:: https://raw.githubusercontent.com/PyPOTS/pypots.github.io/main/static/figs/pypots_logos/TSDB_logo_FFBG.svg?sanitize=true
:height: 160
:align: right
:target: https://github.com/WenjieDu/TSDB
Expand Down Expand Up @@ -43,6 +43,14 @@ Welcome to TSDB documentation!

📣 TSDB now supports a total of 1️⃣6️⃣8️⃣ time-series datasets ‼️

.. image:: https://raw.githubusercontent.com/PyPOTS/pypots.github.io/main/static/figs/pypots_logos/PyPOTS_logo_FFBG.svg?sanitize=true
:height: 160
:align: left
:target: https://github.com/WenjieDu/PyPOTS
:alt: PyPOTS logo

TSDB is a part of `PyPOTS project <https://github.com/WenjieDu/PyPOTS>`_ (a Python toolbox for data mining on Partially-Observed Time Series), and was separated from PyPOTS for decoupling datasets from learning algorithms.

TSDB is created to help researchers and engineers get rid of data collecting and downloading, and focus back on data processing details.
TSDB provides all-in-one-stop convenience for downloading and loading open-source time-series datasets (available datasets listed `below <https://github.com/WenjieDu/TSDB#-list-of-available-datasets>`_).

Expand Down Expand Up @@ -80,37 +88,28 @@ or install from source code:
data = tsdb.load_dataset('physionet_2012') # select the dataset you need and load it, TSDB will download, extract, and process it automatically
tsdb.download_and_extract('physionet_2012', './save_it_here') # if you need the raw data, use download_and_extract()
tsdb.list_cached_data() # datasets you once loaded are cached, and you can check them with list_cached_data()
tsdb.delete_cached_data() # you can delete all cache with delete_cached_data() to free disk space
tsdb.delete_cached_data(dataset_name='physionet_2012') # or you can delete only one specific dataset and preserve others
tsdb.delete_cached_data(dataset_name='physionet_2012') # you can delete only one specific dataset and preserve others
tsdb.delete_cached_data() # or you can delete all cache with delete_cached_data() to free disk space
That's all. Simple and efficient. Enjoy it! 😃


❖ List of Available Datasets
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
=============================================================================================================================== ==========================================
Name Main Tasks
=============================================================================================================================== ==========================================
`PhysioNet Challenge 2012 <https://github.com/WenjieDu/TSDB/tree/main/dataset_profiles/physionet_2012>`_ Classification, Forecasting, Imputation
`PhysioNet Challenge 2019 <https://github.com/WenjieDu/TSDB/tree/main/dataset_profiles/physionet_2019>`_ Classification, Imputation
`Beijing Multi-Site Air-Quality <https://github.com/WenjieDu/TSDB/tree/main/dataset_profiles/beijing_multisite_air_quality>`_ Forecasting, Imputation
`Electricity Load Diagrams <https://github.com/WenjieDu/TSDB/tree/main/dataset_profiles/electricity_load_diagrams>`_ Forecasting, Imputation
`UCR & UEA Datasets <https://github.com/WenjieDu/TSDB/tree/main/dataset_profiles/ucr_uea_datasets>`_ (all 163 datasets) Classification
`Vessel AIS data <https://github.com/WenjieDu/TSDB/tree/main/dataset_profiles/vessel_ais>`_ Imputation, Forecasting, Classification
=============================================================================================================================== ==========================================
=================================================================================================================================================================== ==========================================
Name Main Tasks
=================================================================================================================================================================== ==========================================
`PhysioNet Challenge 2012 <https://github.com/WenjieDu/TSDB/tree/main/dataset_profiles/physionet_2012>`_ :cite:`silva2012physionet` Classification, Forecasting, Imputation
`PhysioNet Challenge 2019 <https://github.com/WenjieDu/TSDB/tree/main/dataset_profiles/physionet_2019>`_ :cite:`reyna2019physionet` Classification, Imputation
`Beijing Multi-Site Air-Quality <https://github.com/WenjieDu/TSDB/tree/main/dataset_profiles/beijing_multisite_air_quality>`_ :cite:`zhang2017airquality` Forecasting, Imputation
`Electricity Load Diagrams <https://github.com/WenjieDu/TSDB/tree/main/dataset_profiles/electricity_load_diagrams>`_ :cite:`trindade2015electricity` Forecasting, Imputation
`UCR & UEA Datasets <https://github.com/WenjieDu/TSDB/tree/main/dataset_profiles/ucr_uea_datasets>`_ (all 163 datasets) :cite:`bagnall2018uea` :cite:`dau2018ucr` Classification
`Vessel AIS data <https://github.com/WenjieDu/TSDB/tree/main/dataset_profiles/vessel_ais>`_ :cite:`grgicevic2023ais` Imputation, Forecasting, Classification
=================================================================================================================================================================== ==========================================

❖ Citing TSDB/PyPOTS
^^^^^^^^^^^^^^^^^^^^^

.. image:: https://raw.githubusercontent.com/WenjieDu/PyPOTS/main/docs/_static/figs/PyPOTS_logo.svg?sanitize=true
:height: 160
:align: left
:target: https://github.com/WenjieDu/PyPOTS
:alt: PyPOTS logo

TSDB is a part of `PyPOTS project <https://github.com/WenjieDu/PyPOTS>`_ (a Python toolbox for data mining on Partially-Observed Time Series), and was separated from PyPOTS for decoupling datasets from learning algorithms.

The paper introducing PyPOTS is available on arXiv at `this URL <https://arxiv.org/abs/2305.18811>`_.,
and we are pursuing to publish it in prestigious academic venues, e.g. JMLR (track for
`Machine Learning Open Source Software <https://www.jmlr.org/mloss/>`_). If you use PyPOTS in your work,
Expand Down
2 changes: 1 addition & 1 deletion docs/references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ @article{silva2012physionet
}

@article{reyna2019physionet,
title={Early prediction of sepsis from clinical data: the PhysioNet\/Computing in Cardiology Challenge 2019.},
title={Early prediction of sepsis from clinical data: the PhysioNet/Computing in Cardiology Challenge 2019.},
author={Reyna, MA and Josef, C and Jeter, R and Shashikumar, SP and Westover, MB and Nemati, S and Clifford, GD and Sharma, A},
journal={Critical Care Medicine},
volume={48},
Expand Down

0 comments on commit 755dfef

Please sign in to comment.