This is an official implementation of 'A Multi-task Network with Weight Decay Skip Connection Training for Anomaly Detection in Retinal Fundus Images'. (Accepted by MICCAI 2022)
A Multi-task Network with Weight Decay Skip Connection Training for Anomaly Detection in Retinal Fundus Images
- numpy>=1.17.0
- scipy>=1.5.2
- Pillow>=8.2.0
- pytorch>=1.7.1
- torchvision>=0.8.2
- tqdm>=4.59.0
- scikit-learn>= 0.24.2
- scikit-image>=0.17.2
The proposed method is evaluated on two publicly-available datasets, i.e.
The proposed WDMT-Net method is trained through two steps:
-
Data Preparation
Generate the list of HOG image and Patches :
python3 data_find.py \ --dataset ['IDRiD'/'ADAM'] \ --path {data dir}
For example,
python3 data_find.py --dataset 'IDRiD' --path './dataset/'
And then you can get lists containing images and corresponding labels in './label/'.
-
Training and testing model
python3 main.py \ --dataset ['IDRiD'/'ADAM'] \ --datadir './labels/' \ --hog \ --lr 1e-4 \ --batch_size 32 \ --epochs 200 \ --deta 0.05 \