This part of my life is called "The Pursuit of Doctorate". Here is my blog about learning process.
Legend:
📒 | 📝 | ⌨️ | 📷 | 💾 |
---|---|---|---|---|
PDF Files |
Notes | Code | Slides | Other Supplementaries |
A curated list of awesome privacy protection research materials.
Courses:
Papers:
- Policy Brief
- Survey
- Basic Techniques
- Private Framework
- Private Benchmark
- Private Data Publishing
- Private Data Analysis
- Machine Unlearning
- Cryptography
Title | Authors | Published in | Year | Files | Notes | Supplementaries |
---|---|---|---|---|---|---|
数据库系统概论 | 王珊, 萨师煊 | 高等教育出版社 | 2014 | 📝 |
-
| The Algorithmic Foundations of Differential Privacy | Cynthia Dwork, Aaron Roth | TCS | 2014 | [:ledger:](https://www.nowpublishers.com/article/Details/TCS-042) | | [:floppy_disk:](http://www.cis.upenn.edu/~aaroth/courses/privacyF11.html) |
-
Jordi Soria-Comas, Josep Domingo-Ferrer: Optimal data-independent noise for differential privacy. Inf. Sci. 250: 200-214 (2013)
-
Tianqing Zhu, Gang Li, Wanlei Zhou, Philip S. Yu: Differential Privacy and Applications. Advances in Information Security 69, Springer 2017, ISBN 978-3-319-62002-2, pp. 1-222
-
Ninghui Li, Min Lyu, Dong Su, Weining Yang: Differential Privacy: From Theory to Practice. Synthesis Lectures on Information Security, Privacy, & Trust, Morgan & Claypool Publishers 2016, pp. 1-138
Instructors | Institution | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|
The U.S. Census Bureau Adopts Differential Privacy | John M. Abowd | U.S. Census Bureau | KDD 2018 | 📒 | 📷 |
-
| The Algorithmic Foundations of Data Privacy | Aaron Roth | Penn | Fall 2011 | [:ledger:](http://www.cis.upenn.edu/~aaroth/courses/privacyF11.html) | | [:floppy_disk:](https://www.nowpublishers.com/article/Details/TCS-042) |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
China's Social Credit System: A Mark of Progress or a Threat to Privacy? | Martin Chorzempa, Paul Triolo, Samm Sacks | 2018 | 📒 | / | 💾 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Differentially Private Data Publishing and Analysis: A Survey | Tianqing Zhu, Gang Li, Wanlei Zhou, Philip S. Yu | TKDE | 2017 | 📒 | |||
Privacy for Recommender Systems: Tutorial Abstract | Bart P. Knijnenburg, Shlomo Berkovsky | RecSys | 2017 | 📒 | 📷 | ||
Privacy in Location-Based Services: State-of-the-Art and Research Directions | Mohamed F. Mokbel | MDM | 2007 | 📒 | 📷 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Tighter Generalization Bounds for Iterative Differentially Private Learning Algorithms | Fengxiang He, Bohan Wang, Dacheng Tao | UAI | 2021 | 📒 | 📝 | ||
OSDP | One-sided Differential Privacy | Ios Kotsogiannis, Stelios Doudalis, Samuel Haney, Ashwin Machanavajjhala, Sharad Mehrotra | ICDE | 2020 | 📒 | 📷📷 | |
SVT-S | Understanding the Sparse Vector Technique for Differential Privacy | Min Lyu, Dong Su, Ninghui Li | VLDB | 2017 | 📒 | ||
Nearly-Optimal Private LASSO | Kunal Talwar, Abhradeep Thakurta, Li Zhang | NIPS | 2015 | 📒 | 📝 | 📒 | |
Privacy-preserving statistical estimation with optimal convergence rates | Adam D. Smith | STOC | 2011 | 📒 | |||
Smooth sensitivity and sampling in private data analysis | Kobbi Nissim, Sofya Raskhodnikova, Adam D. Smith | STOC | 2007 | 📒 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
KTELO | KTELO: A Framework for Defining Differentially-Private Computations | Dan Zhang, Ryan McKenna, Ios Kotsogiannis, Michael Hay, Ashwin Machanavajjhala, Gerome Miklau | SIGMOD | 2018 | 📒 | ⌨️ |
- PINQ:
Frank McSherry: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. SIGMOD Conference 2009: 19-30
;Davide Proserpio, Sharon Goldberg, Frank McSherry: Calibrating Data to Sensitivity in Private Data Analysis. PVLDB 7(8): 637-648 (2014)
- Fuzz:
Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, Benjamin C. Pierce: Linear dependent types for differential privacy. POPL 2013: 357-370
- PrivInfer:
Gilles Barthe, Gian Pietro Farina, Marco Gaboardi, Emilio Jesús Gallego Arias, Andy Gordon, Justin Hsu, Pierre-Yves Strub: Differentially Private Bayesian Programming. ACM Conference on Computer and Communications Security 2016: 68-79
- LightDP:
Danfeng Zhang, Daniel Kifer: LightDP: towards automating differential privacy proofs. POPL 2017: 888-901
- DPBench:
Michael Hay, Ashwin Machanavajjhala, Gerome Miklau, Yan Chen, Dan Zhang: Principled Evaluation of Differentially Private Algorithms using DPBench. SIGMOD Conference 2016: 139-154
-
| | Differentially private data publishing for data analysis | Dong Su | | 2016 | [:ledger:](https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2220&context=open_access_dissertations) | | |
-
| JTree | Differentially Private High-Dimensional Data Publication via Sampling-Based Inference | Rui Chen, Qian Xiao, Yu Zhang, Jianliang Xu | KDD | 2015 | [:ledger:](https://www.comp.hkbu.edu.hk/~xujl/Papers/kdd15.pdf) | | |
-
| NoisyCut | Top-k frequent itemsets via differentially private FP-trees | Jaewoo Lee, Christopher W. Clifton | KDD | 2014 | [:ledger:](https://cybersecurity.uga.edu/publications/VI_KDD2014.pdf) | | |
-
| PTT<br>k-RecursiveMedians | Differentially Private Algorithms for Empirical Machine Learning | Ben Stoddard, Yan Chen, Ashwin Machanavajjhala | CoRR | 2014 | [:ledger:](https://arxiv.org/pdf/1411.5428.pdf) | | |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
PATE-GAN | PATE-GAN: Generating Synthetic Data with Differential Privacy Guarantees | James Jordon, Jinsung Yoon, Mihaela van der Schaar | ICLR | 2019 | 📒 | ||
Liancheng | Privacy as a Service: Publishing Data and Models | Ashish Dandekar, Debabrota Basu, Thomas Kister, Geong Sen Poh, Jia Xu, Stéphane Bressan | DASFAA | 2019 | 📒 | ||
A Data Publishing System Based on Privacy Preservation | Zhihui Wang, Yun Zhu, Xuchen Zhou | DASFAA | 2019 | 📒 | |||
Approximate Query Processing using Deep Generative Models | Saravanan Thirumuruganathan, Shohedul Hasan, Nick Koudas, Gautam Das | CoRR | 2019 | 📒 | |||
G-PATE | Scalable Differentially Private Generative Student Model via PATE | Yunhui Long, Suxin Lin, Zhuolin Yang, Carl A. Gunter, Bo Li | CoRR | 2019 | 📒 | ||
DP-GAN-DNN | POSTER: A Unified Framework of Differentially Private Synthetic Data Release with Generative Adversarial Network | Pei-Hsuan Lu, Chia-Mu Yu | CCS | 2017 | 📒 | ⌨️ | |
PrivBayes | PrivBayes: Private Data Release via Bayesian Networks | Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, Xiaokui Xiao | TODS SIGMOD |
2017 2014 |
📒 📒 |
⌨️ 📷📷 |
|
Efficient privacy-preserving temporal and spacial data aggregation for smart grid communications | Xiaolei Dong, Jun Zhou, Zhenfu Cao | Concurrency | 2016 | 📒 | 📝 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
PeGaSus | PeGaSus: Data-Adaptive Differentially Private Stream Processing | Yan Chen, Ashwin Machanavajjhala, Michael Hay, Gerome Miklau | CCS | 2017 | 📒 | 📝 |
-
| CCDPSD | 异方差加噪下差分隐私流数据发布一致性优化算法 | 孙岚, 康健, 吴英杰, 张立群 | 清华大学学报 | 2018 | [:ledger:](http://kns.cnki.net/KCMS/detail/11.2223.N.20180921.0900.001.html) | | |
-
| | 面向实时数据流的差分隐私直方图发布技术 | 杨庚, 夏春婷, 白云璐 | 南京邮电大学学报 | 2018 | [:ledger:](http://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CJFDLAST2018&filename=NJYD201802014) | | |
-
| PrivTree | PrivTree: A Differentially Private Algorithm for Hierarchical Decompositions | Jun Zhang, Xiaokui Xiao, Xing Xie | SIGMOD | 2016 | [:ledger:](http://delivery.acm.org/10.1145/2890000/2882928/p155-zhang.pdf) | | |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
GSN-DP | Geo-social network publication based on differential privacy | Xiaochun Wang, Yidong Li | FCS | 2018 | 📒 | 📝 | 📷 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
RPM | Random permutation Maxout transform for cancellable facial template protection | Andrew Beng Jin Teoh, Sejung Cho, Jihyeon Kim | MTA | 2018 | 📒 | 📝 | |
BEMK | 面向人脸图像发布的差分隐私保护 | 张啸剑, 付聪聪, 孟小峰 | JIG | 2018 | 📒 | 📝 | |
DPGAN | Differentially Private Generative Adversarial Network | Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, Jiayu Zhou | CoRR | 2018 | 📒 | ⌨️ |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Robust anomaly detection and backdoor attack detection via differential privacy | Min Du, Ruoxi Jia, Dawn Song | ICLR | 2020 | 📒 | 📝⌨️ | ||
Differentially Private Meta-Learning | Jeffrey Li, Mikhail Khodak, Sebastian Caldas, Ameet Talwalkar | ICLR | 2020 | 📒 | 📝 | ||
Privacy Enhanced Multimodal Neural Representations for Emotion Recognition | Mimansa Jaiswal, Emily Mower Provost | AAAI | 2020 | 📒 | |||
Utility/Privacy Trade-off through the lens of Optimal Transport | Etienne Boursier, Vianney Perchet | AISTATS | 2020 | 📒 | ⌨️ | ||
Understanding Gradient Clipping in Private SGD: A Geometric Perspective | Xiangyi Chen, Zhiwei Steven Wu, Mingyi Hong | NeurIPS | 2020 | 📒 | 📝📝📝 | 📒 | |
Bounding User Contributions: A Bias-Variance Trade-off in Differential Privacy | Kareem Amin, Alex Kulesza, Andres Muñoz Medina, Sergei Vassilvitskii | ICML | 2019 | 📒 | 📝📷📷 | ||
A General Approach to Adding Differential Privacy to Iterative Training Procedures | H. Brendan McMahan, Galen Andrew | CoRR | 2018 | 📒 | ⌨️ | ||
AdaClip | AdaCliP: Adaptive Clipping for Private SGD | Venkatadheeraj Pichapati, Ananda Theertha Suresh, Felix X. Yu, Sashank J. Reddi, Sanjiv Kumar | CoRR | 2019 | 📒 | ||
Differentially Private Learning with Adaptive Clipping | Om Thakkar, Galen Andrew, H. Brendan McMahan | CoRR | 2019 | 📒 | |||
DP-FedAvg | Learning Differentially Private Recurrent Language Models | H. Brendan McMahan, Daniel Ramage, Kunal Talwar, Li Zhang | ICLR | 2018 | 📒 | 📝 | |
Three Tools for Practical Differential Privacy | Koen Lennart van der Veen, Ruben Seggers, Peter Bloem, Giorgio Patrini | PPML | 2018 | 📒 | |||
dp-GAN | Differentially Private Releasing via Deep Generative Model | Xinyang Zhang, Shouling Ji, Ting Wang | CoRR | 2018 | 📒 | ⌨️ | |
Differentially Private Federated Learning: A Client Level Perspective | Robin C. Geyer, Tassilo Klein, Moin Nabi | CoRR | 2017 | 📒 | ⌨️ 💾 |
||
DPSGD | Deep Learning with Differential Privacy | Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang | CCS | 2016 | 📒 | 💾 ⌨️ |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Diff-FPM | Mining frequent graph patterns with differential privacy | Entong Shen, Ting Yu | KDD | 2013 | 📒 | 📷 |
-
| PrivBasis | PrivBasis: Frequent Itemset Mining with Differential Privacy | Ninghui Li, Wahbeh H. Qardaji, Dong Su, Jianneng Cao | PVLDB | 2012 | [:ledger:](https://dl.acm.org/citation.cfm?id=2350251) | | [:keyboard:](https://github.com/DongSuIBM/PrivBasis) |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
FedGNN | FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation | Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, Xing Xie | CoRR | 2021 | 📒 | ||
Adam-DP | Privacy-Preserving Graph Convolutional Networks for Text Classification | Timour Igamberdiev, Ivan Habernal | CoRR | 2021 | 📒 | ||
Data-Dependent Differentially Private Parameter Learning for Directed Graphical Models | Amrita Roy Chowdhury, Theodoros Rekatsinas, Somesh Jha | ICML | 2020 | 📒 | 📒 | ||
PPKG | Survey and Open Problems in Privacy Preserving Knowledge Graph: Merging, Query, Representation, Completion and Applications | Chaochao Chen, Jamie Cui, Guanfeng Liu, Jia Wu, Li Wang | CoRR | 2020 | 📒 | ||
APGE | Adversarial Privacy Preserving Graph Embedding against Inference Attack | Kaiyang Li, Guangchun Luo, Yang Ye, Wei Li, Shihao Ji, Zhipeng Cai | CoRR | 2020 | 📒 | ⌨️ | |
LPGNN | Locally Private Graph Neural Networks | Sina Sajadmanesh, Daniel Gatica-Perez | CoRR | 2020 | 📒 | ⌨️ |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Extended PrivSR | Towards privacy preserving social recommendation under personalized privacy settings | Xuying Meng, Suhang Wang, Kai Shu, Jundong Li, Bo Chen, Huan Liu, Yujun Zhang | WWWJ | 2019 | 📒 | ||
FedMF | Secure Federated Matrix Factorization | Di Chai, Leye Wang, Kai Chen, Qiang Yang | FML | 2019 | 📒 | 📝 | ⌨️ |
GD-DR | Privacy Enhanced Matrix Factorization for Recommendation with Local Differential Privacy | Hyejin Shin, Sungwook Kim, Junbum Shin, Xiaokui Xiao | TKDE | 2018 | 📒 | 📝 | |
PrivSR | Personalized Privacy-Preserving Social Recommendation | Xuying Meng, Suhang Wang, Kai Shu, Jundong Li, Bo Chen, Huan Liu, Yujun Zhang | AAAI | 2018 | 📒 | 📝 | 💾 |
DMF | Privacy Preserving Point-of-Interest Recommendation Using Decentralized Matrix Factorization | Chaochao Chen, Ziqi Liu, Peilin Zhao, Jun Zhou, Xiaolong Li | AAAI | 2018 | 📒 | 📝 | |
EpicRec | EpicRec: Towards Practical Differentially Private Framework for Personalized Recommendation | Yilin Shen, Hongxia Jin | CCS | 2016 | 📒 | ||
DPMF | Differentially Private Matrix Factorization | Jingyu Hua, Chang Xia, Sheng Zhong | IJCAI | 2015 | 📒 | 📝 | |
DP-UnP3R | Privacy-Preserving Personalized Recommendation: An Instance-Based Approach via Differential Privacy | Yilin Shen, Hongxia Jin | ICDM | 2014 | 📒 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Differentially Private Survival Function Estimation | Lovedeep Gondara, Ke Wang | MLHC | 2020 | 📒 | ⌨️ |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Information Leakage in Embedding Models | Congzheng Song, Ananth Raghunathan | CCS | 2020 | 📒 | 📷⌨️ | ||
Privacy Risks of General-Purpose Language Models | Xudong Pan, Mi Zhang, Shouling Ji, Min Yang | IEEE Symposium on Security and Privacy | 📒 | ||||
DPNR | Differentially Private Representation for NLP: Formal Guarantee and An Empirical Study on Privacy and Fairness | Lingjuan Lyu, Xuanli He, Yitong Li | EMNLP | 2020 | 📒 | ⌨️ | |
TextHide | TextHide: Tackling Data Privacy for Language Understanding Tasks | Yangsibo Huang, Zhao Song, Danqi Chen, Kai Li, Sanjeev Arora | EMNLP | 2020 | 📒 | ⌨️ | |
PolicyQA | PolicyQA: A Reading Comprehension Dataset for Privacy Policies | Wasi Uddin Ahmad, Jianfeng Chi, Yuan Tian, Kai-Wei Chang | EMNLP | 2020 | 📒 | ⌨️ | |
FedNewsRec | Privacy-Preserving News Recommendation Model Learning | Tao Qi, Fangzhao Wu, Chuhan Wu, Yongfeng Huang, Xing Xie | EMNLP | 2020 | 📒 | ⌨️ | |
MG-PriFair | Multimodal Review Generation with Privacy and Fairness Awareness | Xuan-Son Vu, Thanh-Son Nguyen, Duc-Trong Le, Lili Jiang | COLING | 2020 | 📒 | 📷 | |
Towards Privacy by Design in Learner Corpora Research: A Case of On-the-fly Pseudonymization of Swedish Learner Essays | Elena Volodina, Yousuf Ali Mohammed, Sandra Derbring, Arild Matsson, Beáta Megyesi | COLING | 2020 | 📒 | |||
OME | Towards Differentially Private Text Representations | Lingjuan Lyu, Yitong Li, Xuanli He, Tong Xiao | SIGIR | 2020 | 📒 | 📝 | ⌨️ |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
When Machine Unlearning Jeopardizes Privacy | Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, Yang Zhang | CCS | 2021 | 📒 | ⌨️📷 | ||
Mixed-Linear Forgetting | Mixed-Privacy Forgetting in Deep Networks | Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, Stefano Soatto | CVPR | 2021 | 📒 | 📒 | |
Remember What You Want to Forget: Algorithms for Machine Unlearning | Ayush Sekhari, Jayadev Acharya, Gautam Kamath, Ananda Theertha Suresh | CoRR | 2021 | 📒 | |||
GraphEraser | Graph Unlearning | Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, Yang Zhang | CoRR | 2021 | 📒 | ||
DeltaGrad | DeltaGrad: Rapid retraining of machine learning models | Yinjun Wu, Edgar Dobriban, Susan B. Davidson | ICML | 2020 | 📒 | 📒📷📷⌨️ | |
Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks | Aditya Golatkar, Alessandro Achille, Stefano Soatto | CVPR | 2020 | 📒 | 📒📷⌨️ | ||
Towards Probabilistic Verification of Machine Unlearning | David Marco Sommer, Liwei Song, Sameer Wagh, Prateek Mittal | CoRR | 2020 | 📒 | ⌨️ | ||
Verifying that the influence of a user data point has been removed from a machine learning classifier | Saurabh Shintre, Jasjeet Dhaliwal | Patent | 2018 | 📒 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Improved Private Set Intersection Against Malicious Adversaries | Peter Rindal, Mike Rosulek | EUROCRYPT | 2017 | 📒 | ⌨️ |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
SPiRiT | Secure Search on Encrypted Data via Multi-Ring Sketch | Adi Akavia, Dan Feldman, Hayim Shaul | CCS | 2018 | 📒 | 📝 | |
CPABKS | Secure and Efficient Attribute-Based Encryption with Keyword Search | Haijiang Wang, Xiaolei Dong, Zhenfu Cao, Dongmei Li | CJ | 2018 | 📒 | 📝 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
CryptZip | Sa Wang, Yiwen Shao, Yungang Bao | Practices of backuping homomorphically encrypted databases | FCS | 2019 | 📒 | 📷 | |
一种基于保形加密的大数据脱敏系统实现及评估 | 卞超轶, 朱少敏, 周涛 | 电信科学 | 2017 | 📒 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Practical Approximate k Nearest Neighbor Queries with Location and Query Privacy | Xun Yi, Russell Paulet, Elisa Bertino, Vijay Varadharajan | TKDE | 2016 | 📒 | |||
A Privacy-Preserving Framework for Large-Scale Content-Based Information Retrieval | Li Weng, Laurent Amsaleg, April Morton, Stéphane Marchand-Maillet | TIFS | 2015 | 📒 | |||
Privacy-Preserving and Content-Protecting Location Based Queries | Russell Paulet, Md. Golam Kaosar, Xun Yi, Elisa Bertino | TKDE | 2014 | 📒 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
CryptoNets | CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy | Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig, John Wernsing | ICML | 2016 | 📒 |
A curated list of awesome federated learning research materials.
Courses:
Papers:
Instructors | Institution | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|
GDPR, Data Shortage and AI | Qiang Yang | HKUST | 2019 | 📷 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Federated Machine Learning: Concept and Applications | Qiang Yang, Yang Liu, Tianjian Chen, Yongxin Tong | TIST | 2019 | 📒 | 📝 | 💾 | |
Federated Learning | Florian Hartmann | 2018 | 📒 | ⌨️⌨️⌨️ |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Efficient and Robust Asynchronous Federated Learning with Stragglers | Ming Chen, Bingcheng Mao, Tianyi Ma | CoRR | 2020 | 📒 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
q-FedAvg | Fair Resource Allocation in Federated Learning | Tian Li, Maziar Sanjabi, Virginia Smith | ICLR | 2020 | 📒 | ||
AFL | Agnostic Federated Learning | Mehryar Mohri, Gary Sivek, Ananda Theertha Suresh | ICML | 2019 | 📒 | 💾 📷 |
|
FedAvg | Communication-Efficient Learning of Deep Networks from Decentralized Data | Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agüera y Arcas | AISTATS | 2017 | 📒 | 💾 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Federated CIFG | Federated Learning for Mobile Keyboard Prediction | Andrew Hard, Kanishka Rao, Rajiv Mathews, Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, Daniel Ramage | CoRR | 2018 | 📒 | 💾 | |
Federated Meta-Learning for Recommendation | Fei Chen, Zhenhua Dong, Zhenguo Li, Xiuqiang He | CoRR | 2018 | 📒 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Towards Federated Learning at Scale: System Design | Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi, H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, Jason Roselander | SysML | 2019 | 📒 |
A curated list of awesome fairness research materials.
Courses:
Papers:
Instructors | Institution | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|
Fairness and Control of Exposure in Two-sided Markets | Thorsten Joachims | ICTIR | 2021 | 📒 | ||
Fairness-Aware Machine Learning: Practical Challenges and Lessons Learned | Sarah Bird, Ben Hutchinson, Krishnaram Kenthapadi, Emre Kıcıman, Margaret Mitchell | Microsoft |
KDD 2019 | 📝 | 📷 | |
Challenges of incorporating algorithmic fairness into industry practice | Henriette Cramer, Ken Holstein, Jenn Wortman Vaughan, Hal Daumé III, Miroslav Dudík, Hanna Wallach, Sravana Reddy, Jean Garcia-Gathright | Microsoft Research | ACM FAccT 2019 | 📷 |
Instructors | Institution | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|
Counterfactual reasoning in algorithmic fairness | Ricardo Silva | UCL Alan Turing Institute |
FairWare @ ICSE 2018 | 📷 | ||
Fairness in Machine Learning and Its Causal Aspects | Ricardo Silva | UCL Alan Turing Institute |
2017 | 📷 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Fairness-Aware Recommendation in Multi-Sided Platforms | Masoud Mansoury | WSDM | 2021 | 📒 | |||
Bridging Machine Learning and Mechanism Design towards Algorithmic Fairness | Jessie Finocchiaro, Roland Maio, Faidra Monachou, Gourab K. Patro, Manish Raghavan, Ana-Andreea Stoica, Stratis Tsirtsis | CoRR | 2020 | 📒 | |||
A Survey on Bias and Fairness in Machine Learning | Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, Aram Galstyan | CoRR | 2019 | 📒 | |||
The Frontiers of Fairness in Machine Learning | Alexandra Chouldechova, Aaron Roth | CoRR | 2018 | 📒 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
EquiTensors | EquiTensors: Learning Fair Integrations of Heterogeneous Urban Data | An Yan, Bill Howe | SIGMOD | 2021 | 📒 | 📷⌨️ | |
Constructing a Fair Classifier with Generated Fair Data | Taeuk Jang, Feng Zheng, Xiaoqian Wang | AAAI | 2021 | 📒 | |||
CFair | Conditional Learning of Fair Representations | Han Zhao, Amanda Coston, Tameem Adel, Geoffrey J. Gordon | ICLR | 2020 | 📒 | 📝 | 📝 |
Fairness warnings fair-MAML |
Fairness warnings and fair-MAML: learning fairly with minimal data | Dylan Slack, Sorelle A. Friedler, Emile Givental | FAT* | 2020 | 📒 | 📝📷📷⌨️ | |
AdvDebias | Inherent Tradeoffs in Learning Fair Representations | Han Zhao, Geoffrey J. Gordon | NeurIPS | 2019 | 📒 | 📝 | 📝📝📝📷📷⌨️ |
Random Repair | Obtaining Fairness using Optimal Transport Theory | Paula Gordaliza, Eustasio del Barrio, Fabrice Gamboa, Jean-Michel Loubes | ICML | 2019 | 📒 | 📒⌨️📷 | |
FFVAE | Flexibly Fair Representation Learning by Disentanglement | Elliot Creager, David Madras, Jörn-Henrik Jacobsen, Marissa A. Weis, Kevin Swersky, Toniann Pitassi, Richard S. Zemel | ICML | 2019 | 📒 | 📒📷 | |
DP-postprocessing DP-oracle-learner |
Differentially Private Fair Learning | Matthew Jagielski, Michael J. Kearns, Jieming Mao, Alina Oprea, Aaron Roth, Saeed Sharifi-Malvajerdi, Jonathan Ullman | ICML | 2019 | 📒 | 📒📷 | |
Fair Regression | Fair Regression: Quantitative Definitions and Reduction-Based Algorithms | Alekh Agarwal, Miroslav Dudík, Zhiwei Steven Wu | ICML | 2019 | 📒 | 📒⌨️⌨️📷 | |
Pairwise Fairness | Fairness in Recommendation Ranking through Pairwise Comparisons | Alex Beutel, Jilin Chen, Tulsee Doshi, Hai Qian, Li Wei, Yi Wu, Lukasz Heldt, Zhe Zhao, Lichan Hong, Ed H. Chi, Cristos Goodrow | KDD | 2019 | 📒 | 📝 | 📷 |
Strong Demographic Parity | Wasserstein Fair Classification | Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich Jiang, Silvia Chiappa | UAI | 2019 | 📒 | 📒⌨️ | |
Exploring Human Gender Stereotypes with Word Association Test | Yupei Du, Yuanbin Wu, Man Lan | EMNLP | 2019 | 📒 | ⌨️ | ||
AVD Penalizers SD Penalizers |
Penalizing Unfairness in Binary Classification | Yahav Bechavod, Katrina Ligett | CoRR | 2017 | 📒 | ⌨️ | |
Equalized Odds | Equality of Opportunity in Supervised Learning | Moritz Hardt, Eric Price, Nati Srebro | NIPS | 2016 | 📒 | 📒📝 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Counterfactual Privilege | Making Decisions that Reduce Discriminatory Impacts | Matt J. Kusner, Chris Russell, Joshua R. Loftus, Ricardo Silva | ICML | 2019 | 📒 | 📒⌨️ 📷📷 |
|
Fair K Fair Add |
Counterfactual Fairness | Matt J. Kusner, Joshua R. Loftus, Chris Russell, Ricardo Silva | NIPS | 2017 | 📒 | 📝 | 📒⌨️📷📷 |
Multi-World Fairness | When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness | Chris Russell, Matt J. Kusner, Joshua R. Loftus, Ricardo Silva | NIPS | 2017 | 📒 | 📝 | 📷 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Slice Tuner | Slice Tuner: A Selective Data Acquisition Framework for Accurate and Fair Machine Learning Models | SIGMOD | 2021 | 📒 | 📷📷⌨️ | ||
TFROM | TFROM: A Two-sided Fairness-Aware Recommendation Model for Both Customers and Providers | Yao Wu, Jian Cao, Guandong Xu, Yudong Tan | SIGIR | 2021 | 📒 | 📷 | |
FairBatch | FairBatch: Batch Selection for Model Fairness | Yuji Roh, Kangwook Lee, Steven Euijong Whang, Changho Suh | ICLR | 2021 | 📒 | 📝 | 📷📷⌨️ |
Evaluating Fairness of Machine Learning Models Under Uncertain and Incomplete Information | Pranjal Awasthi, Alex Beutel, Matthäus Kleindessner, Jamie Morgenstern, Xuezhi Wang | FAccT | 2021 | 📒 | |||
TSFD Rank | User Fairness, Item Fairness, and Diversity for Rankings in Two-Sided Markets | Lequn Wang, Thorsten Joachims | ICTIR | 2021 | 📒 | ||
EARS | Top-K Contextual Bandits with Equity of Exposure | Olivier Jeunen, Bart Goethals | RecSys | 2021 | 📒 | ⌨️📷 | |
Measuring Model Fairness under Noisy Covariates: A Theoretical Perspective | Flavien Prost, Pranjal Awasthi, Nick Blumm, Aditee Kumthekar, Trevor Potter, Li Wei, Xuezhi Wang, Ed H. Chi, Jilin Chen, Alex Beutel | AIES | 2021 | 📒 | |||
ARL | Fairness without Demographics through Adversarially Reweighted Learning | Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi Wang, Ed Chi | NeurIPS | 2020 | 📒 | 📝📝📝📒⌨️ | |
FairCo | Controlling Fairness and Bias in Dynamic Learning-to-Rank | Marco Morik, Ashudeep Singh, Jessica Hong, Thorsten Joachims | SIGIR | 2020 | 📒 | 📝📷⌨️ | |
FairRec | FairRec: Two-Sided Fairness for Personalized Recommendations in Two-Sided Platforms | Gourab K. Patro, Arpita Biswas, Niloy Ganguly, Krishna P. Gummadi, Abhijnan Chakraborty | WWW | 2020 | 📒 | ⌨️📷📷 | |
Fair Updates in Two-Sided Market Platforms: On Incrementally Updating Recommendations | Gourab K. Patro, Abhijnan Chakraborty, Niloy Ganguly, Krishna P. Gummadi | AAAI | 2020 | 📒 | 📷 | ||
Equalized odds postprocessing under imperfect group information | Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern | AISTATS | 2020 | 📒 | 📒⌨️ | ||
Fair decision making using privacy-protected data | David Pujol, Ryan McKenna, Satya Kuppam, Michael Hay, Ashwin Machanavajjhala, Gerome Miklau | FAT* | 2020 | 📒 | 📷📷 | ||
DPSGD-F | Removing Disparate Impact of Differentially Private Stochastic Gradient Descent on Model Accuracy | Depeng Xu, Wei Du, Xintao Wu | CoRR | 2020 | 📒 | ||
FEN | Learning Fairness in Multi-Agent Systems | Jiechuan Jiang, Zongqing Lu | NeurIPS | 2019 | 📒 | 📒📝📝📝⌨️ | |
Differential Privacy Has Disparate Impact on Model Accuracy | Eugene Bagdasaryan, Omid Poursaeed, Vitaly Shmatikov | NeurIPS | 2019 | 📒 | 📝📝📝📷⌨️ | ||
DC Maximin |
Group-Fairness in Influence Maximization | Alan Tsang, Bryan Wilder, Eric Rice, Milind Tambe, Yair Zick | IJCAI | 2019 | 📒 | 📝⌨️ | |
TREE01 | Fairness without Harm: Decoupled Classifiers with Preference Guarantees | Berk Ustun, Yang Liu, David C. Parkes | ICML | 2019 | 📒 | 📒⌨️📷 | |
Greedy Capture Local Capture |
Proportionally Fair Clustering | Xingyu Chen, Brandon Fain, Liang Lyu, Kamesh Munagala | ICML | 2019 | 📒 | 📝⌨️📷 | |
GF1A/B | Group Fairness for the Allocation of Indivisible Goods | Vincent Conitzer, Rupert Freeman, Nisarg Shah, Jennifer Wortman Vaughan | AAAI | 2019 | 📒 | 📝 | |
PCCS TFCS |
Fair Transfer Learning with Missing Protected Attributes | Amanda Coston, Karthikeyan Natesan Ramamurthy, Dennis Wei, Kush R. Varshney, Skyler Speakman, Zairah Mustahsan, Supriyo Chakraborty | AIES | 2019 | 📒 | ||
FULTR | Fair Learning-to-Rank from Implicit Feedback | Himank Yadav, Zhengxiao Du, Thorsten Joachims | CoRR | 2019 | 📒 | ||
Fairness Without Demographics in Repeated Loss Minimization | Tatsunori B. Hashimoto, Megha Srivastava, Hongseok Namkoong, Percy Liang | ICML | 2018 | 📒 | 📒⌨️ |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Stable-Fair | Stable and Fair Classification | Lingxiao Huang, Nisheeth K. Vishnoi | ICML | 2019 | 📒 | 📝 |
A curated list of awesome blockchain research materials.
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Yellow Paper | Ethereum: A Secure Decentralised Generalised Transaction Ledger | Dr. Gavin Wood | 📒 | ||||
黄皮书 | 以太坊:一种安全去中心化的通用交易账本 | 崔广斌, 高天露 | 📒 | ||||
Untangling Blockchain: A Data Processing View of Blockchain Systems | Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, Ji Wang | TKDE | 2018 | 📒 | 📝 | 💾 | |
Making Sense of Blockchain Applications: A Typology for HCI | Chris Elsden, Arthi Manohar, Jo Briggs, Mike Harding, Chris Speed, John Vines | CHI | 2018 | 📒 | 📝 | ||
BigchainDB | BigchainDB 2.0: The Blockchain Database | BigchainDB | BigchainDB | 2018 | 📒 | ⌨️ | |
BLOCKBENCH | BLOCKBENCH: A Framework for Analyzing Private Blockchains | Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, Kian-Lee Tan | SIGMOD | 2017 | 📒 | ⌨️ | |
区块链隐私保护研究综述 | 祝烈煌, 高峰, 沈蒙, 李艳东, 郑宝昆, 毛洪亮, 吴震 | 计算机研究与发展 | 2017 | 📒 | 📝 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
BlockFL | On-Device Federated Learning via Blockchain and its Latency Analysis | Hyesung Kim, Jihong Park, Mehdi Bennis, Seong-Lyun Kim | CoRR | 2018 | 📒 |
A curated list of awesome research materials.
- Artificial Intelligence
- Robust Statistics
- Generalization
- Large-Scale Optimization
- Combinatorial Optimization
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
WebFace260M | WebFace260M: A Benchmark Unveiling the Power of Million-Scale Deep Face Recognition | Zheng Zhu, Guan Huang, Jiankang Deng, Yun Ye, Junjie Huang, Xinze Chen, Jiagang Zhu, Tian Yang, Jiwen Lu, Dalong Du, Jie Zhou | CVPR | 2021 | 📒 | 💾 | |
Trustworthy AI | Jeannette M. Wing | Commun. ACM | 2021 | 📒 | 📷 | ||
细节决定成败:推荐系统实验反思与讨论 | 施韶韵, 王晨阳, 马为之, 张敏, 刘奕群, 马少平 | 信息安全学报 | 2021 | 📒 | |||
Meta-Learning in Neural Networks: A Survey | Timothy M. Hospedales, Antreas Antoniou, Paul Micaelli, Amos J. Storkey | CoRR | 2020 | 📒 | 📝 | ||
AI Governance in 2019 a Year in Review | Qian Shi, Hui Li, Brian Tse, John Hopcroft, Stuart Russell, Caroline Jeanmaire, Qiang Yang, Pascale Fung, Roman Yampolskiy, Allan Dafoe, Markus Anderljung, Gillian K. Hadfield, Jun Su, Thilo Hagendorff, Petra Ahrweiler, Robin Williams, Colin Allen, Poon King Wang, Ferran Jarabo Carbonell, Xiaohong Wang, Qingfeng Yang, Qi Yin, Don Wright, Miles Brundage, Jack Clark, Irene Solaiman, Gretchen Krueger, Seán Ó hÉigeartaigh, Helen Toner, Millie Liu, Steve Hoffman, Irakli Beridze, Wendell Wallach, Cyrus Hodes, Nicolas Miailhe, Jessica Cussins Newman, Dingding Chen, Eva Kaili, Francesca Rossi, Charlotte Stix, Angela Daly, Danit Gal, Arisa Ema, Goh Yihan, Nydia Remolina, Urvashi Aneja, Ying Fu, Zhiyun Zhao, Xiuquan Li, Weiwen Duan, Qun Luan, Rui Guo, Yingchun Wang | Shanghai Institute for Science of Science | 2020 | 📒 | 📝 | ||
Meta-Weight-Net | Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting | Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng | NeurIPS | 2019 | 📒 | 📝📝📝 | 📒⌨️ |
Graph Neural Networks for Natural Language Processing | Shikhar Vashishth, Naganand Yadati, Partha Talukdar | EMNLP | 2019 | 📷⌨️📷📷 | |||
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI | Alejandro Barredo Arrieta, Natalia Díaz Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, Francisco Herrera | CoRR | 2019 | 📒 | 📝 | ||
以机器学习的视角来看时序点过程的最新进展 | 严骏驰 | 中国自动化学会模式识别与机器智能专业委员会通讯 | 2019 | 📒 | |||
Temporal Point Processes and the Conditional Intensity Function | Jakob Gulddahl Rasmussen | CoRR | 2018 | 📒 | |||
softImpute-ALS | Matrix completion and low-rank SVD via fast alternating least squares | Trevor Hastie, Rahul Mazumder, Jason D. Lee, Reza Zadeh | JMLR | 2015 | 📒 | ⌨️⌨️⌨️ | |
Efficient Per-Example Gradient Computations | Ian J. Goodfellow | CoRR | 2015 | 📒 | |||
RBO | A similarity measure for indefinite rankings | William Webber, Alistair Moffat, Justin Zobel | TOIS | 2010 | 📒 | ||
BPR | BPR: Bayesian Personalized Ranking from Implicit Feedback | Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, Lars Schmidt-Thieme | UAI | 2009 | 📒 | ||
Damped Newton Algorithms for Matrix Factorization with Missing Data | A. M. Buchanan, Andrew W. Fitzgibbon | CVPR | 2005 | 📒 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
Influence Functions in Deep Learning Are Fragile | Samyadeep Basu, Phillip Pope, Soheil Feizi | ICLR | 2021 | 📒 | 📝 | 📷 | |
Group Influence Functions | On Second-Order Group Influence Functions for Black-Box Predictions | Samyadeep Basu, Xuchen You, Soheil Feizi | ICML | 2020 | 📒 | 📒 | |
TracIn | Estimating Training Data Influence by Tracing Gradient Descent | Garima Pruthi, Frederick Liu, Satyen Kale, Mukund Sundararajan | NeurIPS | 2020 | 📒 | 📝📝📝📝📝 | 📒⌨️ |
On the Accuracy of Influence Functions for Measuring Group Effects | Pang Wei Koh, Kai-Siang Ang, Hubert H. K. Teo, Percy Liang | NeurIPS | 2019 | 📒 | 📝📝📝 | 📒⌨️⌨️📷 | |
Representer Values | Representer Point Selection for Explaining Deep Neural Networks | Chih-Kuan Yeh, Joon Sik Kim, Ian En-Hsu Yen, Pradeep Ravikumar | NeurIPS | 2018 | 📒 | 📝📝 | 📒📷⌨️ |
Understanding Black-box Predictions via Influence Functions | Pang Wei Koh, Percy Liang | ICML | 2017 | 📒 | 📒⌨️⌨️📷 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
When is memorization of irrelevant training data necessary for high-accuracy learning? | Gavin Brown, Mark Bun, Vitaly Feldman, Adam Smith, Kunal Talwar | STOC | 2021 | 📒 | |||
Understanding deep learning (still) requires rethinking generalization | Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals | CACM | 2021 | 📒 | 📝 | 📷 | |
Does Learning Require Memorization? A Short Tale about a Long Tail | Vitaly Feldman | STOC | 2020 | 📒 | 📒📷📷📷 | ||
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation | Vitaly Feldman, Chiyuan Zhang | NeurIPS | 2020 | 📒 | 📒📝📝📝⌨️ | ||
Understanding deep learning requires rethinking generalization | Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals | ICLR | 2017 | 📒 | 📝⌨️📷📷 |
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
BDA | A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton | Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, Jin Zhang | ICML | 2020 | 📒 | ||
AGD+ | On Acceleration with Noise-Corrupted Gradients | Michael Cohen, Jelena Diakonikolas, Lorenzo Orecchia | ICML | 2018 | 📒 | 💾 |
-
Olivier Devolder, François Glineur, Yurii Nesterov: First-order methods of smooth convex optimization with inexact oracle. Math. Program. 146(1-2): 37-75 (2014)
-
Alexandre d'Aspremont: Smooth Optimization with Approximate Gradient. SIAM Journal on Optimization 19(3): 1171-1183 (2008)
Title | Authors | Published in | Year | Files | Notes | Supplementaries | |
---|---|---|---|---|---|---|---|
GSLS | Optimizing top-k retrieval: submodularity analysis and search strategies | Chaofeng Sha, Keqiang Wang, Dell Zhang, Xiaoling Wang, Aoying Zhou | FCS WAIM |
2016 2014 |
📒 📒 |
||
SubmEP | Ensemble Pruning: A Submodular Function Maximization Perspective | Chaofeng Sha, Keqiang Wang, Xiaoling Wang, Aoying Zhou | DASFAA | 2014 | 📒 |
Join discussion in issues.