forked from gligen/GLIGEN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
486 lines (362 loc) · 20.1 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import torch
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.util import instantiate_from_config
import numpy as np
import random
import time
from dataset.concat_dataset import ConCatDataset #, collate_fn
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import os
import shutil
import torchvision
from convert_ckpt import add_additional_channels
import math
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm
from distributed import get_rank, synchronize, get_world_size
from transformers import get_cosine_schedule_with_warmup, get_constant_schedule_with_warmup
from copy import deepcopy
from inpaint_mask_func import draw_masks_from_boxes
from ldm.modules.attention import BasicTransformerBlock
try:
from apex import amp
except:
pass
# = = = = = = = = = = = = = = = = = = useful functions = = = = = = = = = = = = = = = = = #
class ImageCaptionSaver:
def __init__(self, base_path, nrow=8, normalize=True, scale_each=True, range=(-1,1) ):
self.base_path = base_path
self.nrow = nrow
self.normalize = normalize
self.scale_each = scale_each
self.range = range
def __call__(self, images, real, masked_real, captions, seen):
save_path = os.path.join(self.base_path, str(seen).zfill(8)+'.png')
torchvision.utils.save_image( images, save_path, nrow=self.nrow, normalize=self.normalize, scale_each=self.scale_each, range=self.range )
save_path = os.path.join(self.base_path, str(seen).zfill(8)+'_real.png')
torchvision.utils.save_image( real, save_path, nrow=self.nrow)
if masked_real is not None:
# only inpaiting mode case
save_path = os.path.join(self.base_path, str(seen).zfill(8)+'_mased_real.png')
torchvision.utils.save_image( masked_real, save_path, nrow=self.nrow, normalize=self.normalize, scale_each=self.scale_each, range=self.range)
assert images.shape[0] == len(captions)
save_path = os.path.join(self.base_path, 'captions.txt')
with open(save_path, "a") as f:
f.write( str(seen).zfill(8) + ':\n' )
for cap in captions:
f.write( cap + '\n' )
f.write( '\n' )
def read_official_ckpt(ckpt_path):
"Read offical pretrained SD ckpt and convert into my style"
state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"]
out = {}
out["model"] = {}
out["text_encoder"] = {}
out["autoencoder"] = {}
out["unexpected"] = {}
out["diffusion"] = {}
for k,v in state_dict.items():
if k.startswith('model.diffusion_model'):
out["model"][k.replace("model.diffusion_model.", "")] = v
elif k.startswith('cond_stage_model'):
out["text_encoder"][k.replace("cond_stage_model.", "")] = v
elif k.startswith('first_stage_model'):
out["autoencoder"][k.replace("first_stage_model.", "")] = v
elif k in ["model_ema.decay", "model_ema.num_updates"]:
out["unexpected"][k] = v
else:
out["diffusion"][k] = v
return out
def batch_to_device(batch, device):
for k in batch:
if isinstance(batch[k], torch.Tensor):
batch[k] = batch[k].to(device)
return batch
def sub_batch(batch, num=1):
# choose first num in given batch
num = num if num > 1 else 1
for k in batch:
batch[k] = batch[k][0:num]
return batch
def wrap_loader(loader):
while True:
for batch in loader: # TODO: it seems each time you have the same order for all epoch??
yield batch
def disable_grads(model):
for p in model.parameters():
p.requires_grad = False
def count_params(params):
total_trainable_params_count = 0
for p in params:
total_trainable_params_count += p.numel()
print("total_trainable_params_count is: ", total_trainable_params_count)
def update_ema(target_params, source_params, rate=0.99):
for targ, src in zip(target_params, source_params):
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
def create_expt_folder_with_auto_resuming(OUTPUT_ROOT, name):
name = os.path.join( OUTPUT_ROOT, name )
writer = None
checkpoint = None
if os.path.exists(name):
all_tags = os.listdir(name)
all_existing_tags = [ tag for tag in all_tags if tag.startswith('tag') ]
all_existing_tags.sort()
all_existing_tags = all_existing_tags[::-1]
for previous_tag in all_existing_tags:
potential_ckpt = os.path.join( name, previous_tag, 'checkpoint_latest.pth' )
if os.path.exists(potential_ckpt):
checkpoint = potential_ckpt
if get_rank() == 0:
print('auto-resuming ckpt found '+ potential_ckpt)
break
curr_tag = 'tag'+str(len(all_existing_tags)).zfill(2)
name = os.path.join( name, curr_tag ) # output/name/tagxx
else:
name = os.path.join( name, 'tag00' ) # output/name/tag00
if get_rank() == 0:
os.makedirs(name)
os.makedirs( os.path.join(name,'Log') )
writer = SummaryWriter( os.path.join(name,'Log') )
return name, writer, checkpoint
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
class Trainer:
def __init__(self, config):
self.config = config
self.device = torch.device("cuda")
self.l_simple_weight = 1
self.name, self.writer, checkpoint = create_expt_folder_with_auto_resuming(config.OUTPUT_ROOT, config.name)
if get_rank() == 0:
shutil.copyfile(config.yaml_file, os.path.join(self.name, "train_config_file.yaml") )
self.config_dict = vars(config)
torch.save( self.config_dict, os.path.join(self.name, "config_dict.pth") )
# = = = = = = = = = = = = = = = = = create model and diffusion = = = = = = = = = = = = = = = = = #
self.model = instantiate_from_config(config.model).to(self.device)
self.autoencoder = instantiate_from_config(config.autoencoder).to(self.device)
self.text_encoder = instantiate_from_config(config.text_encoder).to(self.device)
self.diffusion = instantiate_from_config(config.diffusion).to(self.device)
state_dict = read_official_ckpt( os.path.join(config.DATA_ROOT, config.official_ckpt_name) )
# modify the input conv for SD if necessary (grounding as unet input; inpaint)
additional_channels = self.model.additional_channel_from_downsampler
if self.config.inpaint_mode:
additional_channels += 5 # 5 = 4(latent) + 1(mask)
add_additional_channels(state_dict["model"], additional_channels)
self.input_conv_train = True if additional_channels>0 else False
# load original SD ckpt (with inuput conv may be modified)
missing_keys, unexpected_keys = self.model.load_state_dict( state_dict["model"], strict=False )
assert unexpected_keys == []
original_params_names = list( state_dict["model"].keys() ) # used for sanity check later
self.autoencoder.load_state_dict( state_dict["autoencoder"] )
self.text_encoder.load_state_dict( state_dict["text_encoder"] )
self.diffusion.load_state_dict( state_dict["diffusion"] )
self.autoencoder.eval()
self.text_encoder.eval()
disable_grads(self.autoencoder)
disable_grads(self.text_encoder)
# = = = = = = = = = = = = = load from ckpt: (usually for inpainting training) = = = = = = = = = = = = = #
if self.config.ckpt is not None:
first_stage_ckpt = torch.load(self.config.ckpt, map_location="cpu")
self.model.load_state_dict(first_stage_ckpt["model"])
# = = = = = = = = = = = = = = = = = create opt = = = = = = = = = = = = = = = = = #
params = []
trainable_names = []
all_params_name = []
for name, p in self.model.named_parameters():
if ("transformer_blocks" in name) and ("fuser" in name):
# New added Attention layers
params.append(p)
trainable_names.append(name)
elif "position_net" in name:
# Grounding token processing network
params.append(p)
trainable_names.append(name)
elif "downsample_net" in name:
# Grounding downsample network (used in input)
params.append(p)
trainable_names.append(name)
elif (self.input_conv_train) and ("input_blocks.0.0.weight" in name):
# First conv layer was modified, thus need to train
params.append(p)
trainable_names.append(name)
else:
# Following make sure we do not miss any new params
# all new added trainable params have to be haddled above
# otherwise it will trigger the following error
assert name in original_params_names, name
all_params_name.append(name)
self.opt = torch.optim.AdamW(params, lr=config.base_learning_rate, weight_decay=config.weight_decay)
count_params(params)
# = = = = = EMA... It is worse than normal model in early experiments, thus never enabled later = = = = = = = = = #
if config.enable_ema:
self.master_params = list(self.model.parameters())
self.ema = deepcopy(self.model)
self.ema_params = list(self.ema.parameters())
self.ema.eval()
# = = = = = = = = = = = = = = = = = = = = create scheduler = = = = = = = = = = = = = = = = = = = = #
if config.scheduler_type == "cosine":
self.scheduler = get_cosine_schedule_with_warmup(self.opt, num_warmup_steps=config.warmup_steps, num_training_steps=config.total_iters)
elif config.scheduler_type == "constant":
self.scheduler = get_constant_schedule_with_warmup(self.opt, num_warmup_steps=config.warmup_steps)
else:
assert False
# = = = = = = = = = = = = = = = = = = = = create data = = = = = = = = = = = = = = = = = = = = #
train_dataset_repeats = config.train_dataset_repeats if 'train_dataset_repeats' in config else None
dataset_train = ConCatDataset(config.train_dataset_names, config.DATA_ROOT, train=True, repeats=train_dataset_repeats)
sampler = DistributedSampler(dataset_train, seed=config.seed) if config.distributed else None
loader_train = DataLoader( dataset_train, batch_size=config.batch_size,
shuffle=(sampler is None),
num_workers=config.workers,
pin_memory=True,
sampler=sampler)
self.dataset_train = dataset_train
self.loader_train = wrap_loader(loader_train)
if get_rank() == 0:
total_image = dataset_train.total_images()
print("Total training images: ", total_image)
# = = = = = = = = = = = = = = = = = = = = load from autoresuming ckpt = = = = = = = = = = = = = = = = = = = = #
self.starting_iter = 0
if checkpoint is not None:
checkpoint = torch.load(checkpoint, map_location="cpu")
self.model.load_state_dict(checkpoint["model"])
if config.enable_ema:
self.ema.load_state_dict(checkpoint["ema"])
self.opt.load_state_dict(checkpoint["opt"])
self.scheduler.load_state_dict(checkpoint["scheduler"])
self.starting_iter = checkpoint["iters"]
if self.starting_iter >= config.total_iters:
synchronize()
print("Training finished. Start exiting")
exit()
# = = = = = = = = = = = = = = = = = = = = misc and ddp = = = = = = = = = = = = = = = = = = = =#
# func return input for grounding tokenizer
self.grounding_tokenizer_input = instantiate_from_config(config.grounding_tokenizer_input)
self.model.grounding_tokenizer_input = self.grounding_tokenizer_input
# func return input for grounding downsampler
self.grounding_downsampler_input = None
if 'grounding_downsampler_input' in config:
self.grounding_downsampler_input = instantiate_from_config(config.grounding_downsampler_input)
if get_rank() == 0:
self.image_caption_saver = ImageCaptionSaver(self.name)
if config.distributed:
self.model = DDP( self.model, device_ids=[config.local_rank], output_device=config.local_rank, broadcast_buffers=False )
@torch.no_grad()
def get_input(self, batch):
z = self.autoencoder.encode( batch["image"] )
context = self.text_encoder.encode( batch["caption"] )
_t = torch.rand(z.shape[0]).to(z.device)
t = (torch.pow(_t, 1) * 1000).long()
t = torch.where(t!=1000, t, 999) # if 1000, then replace it with 999
inpainting_extra_input = None
if self.config.inpaint_mode:
# extra input for the inpainting model
inpainting_mask = draw_masks_from_boxes(batch['boxes'], 64, randomize_fg_mask=self.config.randomize_fg_mask, random_add_bg_mask=self.config.random_add_bg_mask).cuda()
masked_z = z*inpainting_mask
inpainting_extra_input = torch.cat([masked_z,inpainting_mask], dim=1)
grounding_extra_input = None
if self.grounding_downsampler_input != None:
grounding_extra_input = self.grounding_downsampler_input.prepare(batch)
return z, t, context, inpainting_extra_input, grounding_extra_input
def run_one_step(self, batch):
x_start, t, context, inpainting_extra_input, grounding_extra_input = self.get_input(batch)
noise = torch.randn_like(x_start)
x_noisy = self.diffusion.q_sample(x_start=x_start, t=t, noise=noise)
grounding_input = self.grounding_tokenizer_input.prepare(batch)
input = dict(x=x_noisy,
timesteps=t,
context=context,
inpainting_extra_input=inpainting_extra_input,
grounding_extra_input=grounding_extra_input,
grounding_input=grounding_input)
model_output = self.model(input)
loss = torch.nn.functional.mse_loss(model_output, noise) * self.l_simple_weight
self.loss_dict = {"loss": loss.item()}
return loss
def start_training(self):
iterator = tqdm(range(self.starting_iter, self.config.total_iters), desc='Training progress', disable=get_rank() != 0 )
self.model.train()
for iter_idx in iterator: # note: iter_idx is not from 0 if resume training
self.iter_idx = iter_idx
self.opt.zero_grad()
batch = next(self.loader_train)
batch_to_device(batch, self.device)
loss = self.run_one_step(batch)
loss.backward()
self.opt.step()
self.scheduler.step()
if self.config.enable_ema:
update_ema(self.ema_params, self.master_params, self.config.ema_rate)
if (get_rank() == 0):
if (iter_idx % 10 == 0):
self.log_loss()
if (iter_idx == 0) or ( iter_idx % self.config.save_every_iters == 0 ) or (iter_idx == self.config.total_iters-1):
self.save_ckpt_and_result()
synchronize()
synchronize()
print("Training finished. Start exiting")
exit()
def log_loss(self):
for k, v in self.loss_dict.items():
self.writer.add_scalar( k, v, self.iter_idx+1 ) # we add 1 as the actual name
@torch.no_grad()
def save_ckpt_and_result(self):
model_wo_wrapper = self.model.module if self.config.distributed else self.model
iter_name = self.iter_idx + 1 # we add 1 as the actual name
if not self.config.disable_inference_in_training:
# Do an inference on one training batch
batch_here = self.config.batch_size
batch = sub_batch( next(self.loader_train), batch_here)
batch_to_device(batch, self.device)
if "boxes" in batch:
real_images_with_box_drawing = [] # we save this durining trianing for better visualization
for i in range(batch_here):
temp_data = {"image": batch["image"][i], "boxes":batch["boxes"][i]}
im = self.dataset_train.datasets[0].vis_getitem_data(out=temp_data, return_tensor=True, print_caption=False)
real_images_with_box_drawing.append(im)
real_images_with_box_drawing = torch.stack(real_images_with_box_drawing)
else:
# keypoint case
real_images_with_box_drawing = batch["image"]*0.5 + 0.5
uc = self.text_encoder.encode( batch_here*[""] )
context = self.text_encoder.encode( batch["caption"] )
plms_sampler = PLMSSampler(self.diffusion, model_wo_wrapper)
shape = (batch_here, model_wo_wrapper.in_channels, model_wo_wrapper.image_size, model_wo_wrapper.image_size)
# extra input for inpainting
inpainting_extra_input = None
if self.config.inpaint_mode:
z = self.autoencoder.encode( batch["image"] )
inpainting_mask = draw_masks_from_boxes(batch['boxes'], 64, randomize_fg_mask=self.config.randomize_fg_mask, random_add_bg_mask=self.config.random_add_bg_mask).cuda()
masked_z = z*inpainting_mask
inpainting_extra_input = torch.cat([masked_z,inpainting_mask], dim=1)
grounding_extra_input = None
if self.grounding_downsampler_input != None:
grounding_extra_input = self.grounding_downsampler_input.prepare(batch)
grounding_input = self.grounding_tokenizer_input.prepare(batch)
input = dict( x=None,
timesteps=None,
context=context,
inpainting_extra_input=inpainting_extra_input,
grounding_extra_input=grounding_extra_input,
grounding_input=grounding_input )
samples = plms_sampler.sample(S=50, shape=shape, input=input, uc=uc, guidance_scale=5)
autoencoder_wo_wrapper = self.autoencoder # Note itself is without wrapper since we do not train that.
samples = autoencoder_wo_wrapper.decode(samples).cpu()
samples = torch.clamp(samples, min=-1, max=1)
masked_real_image = batch["image"]*torch.nn.functional.interpolate(inpainting_mask, size=(512, 512)) if self.config.inpaint_mode else None
self.image_caption_saver(samples, real_images_with_box_drawing, masked_real_image, batch["caption"], iter_name)
ckpt = dict(model = model_wo_wrapper.state_dict(),
text_encoder = self.text_encoder.state_dict(),
autoencoder = self.autoencoder.state_dict(),
diffusion = self.diffusion.state_dict(),
opt = self.opt.state_dict(),
scheduler= self.scheduler.state_dict(),
iters = self.iter_idx+1,
config_dict=self.config_dict,
)
if self.config.enable_ema:
ckpt["ema"] = self.ema.state_dict()
torch.save( ckpt, os.path.join(self.name, "checkpoint_"+str(iter_name).zfill(8)+".pth") )
torch.save( ckpt, os.path.join(self.name, "checkpoint_latest.pth") )