
Deprecate Styles

type

true by default

name
generic

__unstableHasLegacyStyles

__unstableHasDeprecatedStyles

specific __deprecatedHasSmallerMargins

message

generic

Legacy styles for
wp.blockEditor.SomeControl is
deprecated since version 0.0 and will be
removed in version 0.0. Note: Set the
`__unstableHasLegacyStyles` prop to
false to start opting into the new styles,
which will become the default in a future
version.

specific

Smaller margin styles for
wp.blockEditor.SomeControl is
deprecated since version 0.0
and will be removed in version
0.0. Note: Set the
`__deprecatedHasSmallerMargi
ns` prop to false to start opting
into the new styles, which will
become the default in a future
version.

false by default

name

generic __unstableHasNextGenStyles

specific

__nextGenStylesHasLargerMargins

__nextHasLargerMargins

__futureHasLargerMargins

message

generic

Legacy styles for
wp.blockEditor.SomeControl is
deprecated since version 0.0 and will be
removed in version 0.0. Note: Set the
`__unstableHasNextGenStyles` prop to
true to start opting into the new styles,
which will become the default in a future
version.

specific

Smaller margin styles for
wp.blockEditor.SomeControl is
deprecated since version 0.0 and will be
removed in version 0.0. Note: Set the
`__future_hasLargerMargins` prop to
true to start opting into the new styles,
which will become the default in a future
version.

Criteria for putting
styles changes behind
a feature flag

Even with standard
usage, layout may
break in an obvious or
harmful way

Examples

Removing an outer
margin

Substantial changes to
width/height, such as
adding or removing a
size restriction

Exemptions

Non-standard usage
Consumer is overriding
component internals

Minor, non-catastrophic
layout shifts

Minor line height
changes

Size changes that are
only a few pixels

Internal layout changes of a
higher-level component

prefix

__unstable

__deprecated

__nextGenStyles_hasTallerLabel

__next

__future_hasTallerLabel

Back compat strategies
for 3rd-party devs

Based on the WP
version, add a CSS
class to a wrapper
component, and scope
styles based on that

Based on the WP
version, load a different
stylesheet

Questions

Should we deprecate
the transitional prop
once the new styles
are made default, or
can we silently ignore
it? (I hope we can
ignore)

Thoughts

`__future*` or `__next*`
prefix could be used for
any other (non-style)
next-gen feature flag
that is planned to
become a default
behavior

Once deprecated, code
examples in docs/
stories should include
the opt-in to the next-
gen styles so new
consumers are
encouraged to adopt it
from the start

