forked from ijkguo/mx-rcnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_end2end.py
178 lines (158 loc) · 9.38 KB
/
train_end2end.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import argparse
import pprint
import mxnet as mx
import numpy as np
from rcnn.logger import logger
from rcnn.config import config, default, generate_config
from rcnn.symbol import *
from rcnn.core import callback, metric
from rcnn.core.loader import AnchorLoader
from rcnn.core.module import MutableModule
from rcnn.utils.load_data import load_gt_roidb, merge_roidb, filter_roidb
from rcnn.utils.load_model import load_param
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch,
lr=0.001, lr_step='5'):
# setup config
config.TRAIN.BATCH_IMAGES = 1
config.TRAIN.BATCH_ROIS = 128
config.TRAIN.END2END = True
config.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED = True
# load symbol
sym = eval('get_' + args.network + '_train')(num_classes=config.NUM_CLASSES, num_anchors=config.NUM_ANCHORS)
feat_sym = sym.get_internals()['rpn_cls_score_output']
# setup multi-gpu
batch_size = len(ctx)
input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size
# print config
logger.info(pprint.pformat(config))
# load dataset and prepare imdb for training
image_sets = [iset for iset in args.image_set.split('+')]
roidbs = [load_gt_roidb(args.dataset, image_set, args.root_path, args.dataset_path,
flip=not args.no_flip)
for image_set in image_sets]
roidb = merge_roidb(roidbs)
roidb = filter_roidb(roidb)
# load training data
train_data = AnchorLoader(feat_sym, roidb, batch_size=input_batch_size, shuffle=not args.no_shuffle,
ctx=ctx, work_load_list=args.work_load_list,
feat_stride=config.RPN_FEAT_STRIDE, anchor_scales=config.ANCHOR_SCALES,
anchor_ratios=config.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING)
# infer max shape
max_data_shape = [('data', (input_batch_size, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]
max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
max_data_shape.append(('gt_boxes', (input_batch_size, 100, 5)))
logger.info('providing maximum shape %s %s' % (max_data_shape, max_label_shape))
# infer shape
data_shape_dict = dict(train_data.provide_data + train_data.provide_label)
arg_shape, out_shape, aux_shape = sym.infer_shape(**data_shape_dict)
arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
out_shape_dict = dict(zip(sym.list_outputs(), out_shape))
aux_shape_dict = dict(zip(sym.list_auxiliary_states(), aux_shape))
logger.info('output shape %s' % pprint.pformat(out_shape_dict))
# load and initialize params
if args.resume:
arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
else:
arg_params, aux_params = load_param(pretrained, epoch, convert=True)
arg_params['rpn_conv_3x3_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['rpn_conv_3x3_weight'])
arg_params['rpn_conv_3x3_bias'] = mx.nd.zeros(shape=arg_shape_dict['rpn_conv_3x3_bias'])
arg_params['rpn_cls_score_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['rpn_cls_score_weight'])
arg_params['rpn_cls_score_bias'] = mx.nd.zeros(shape=arg_shape_dict['rpn_cls_score_bias'])
arg_params['rpn_bbox_pred_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['rpn_bbox_pred_weight'])
arg_params['rpn_bbox_pred_bias'] = mx.nd.zeros(shape=arg_shape_dict['rpn_bbox_pred_bias'])
arg_params['cls_score_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['cls_score_weight'])
arg_params['cls_score_bias'] = mx.nd.zeros(shape=arg_shape_dict['cls_score_bias'])
arg_params['bbox_pred_weight'] = mx.random.normal(0, 0.001, shape=arg_shape_dict['bbox_pred_weight'])
arg_params['bbox_pred_bias'] = mx.nd.zeros(shape=arg_shape_dict['bbox_pred_bias'])
# check parameter shapes
for k in sym.list_arguments():
if k in data_shape_dict:
continue
assert k in arg_params, k + ' not initialized'
assert arg_params[k].shape == arg_shape_dict[k], \
'shape inconsistent for ' + k + ' inferred ' + str(arg_shape_dict[k]) + ' provided ' + str(arg_params[k].shape)
for k in sym.list_auxiliary_states():
assert k in aux_params, k + ' not initialized'
assert aux_params[k].shape == aux_shape_dict[k], \
'shape inconsistent for ' + k + ' inferred ' + str(aux_shape_dict[k]) + ' provided ' + str(aux_params[k].shape)
# create solver
fixed_param_prefix = config.FIXED_PARAMS
data_names = [k[0] for k in train_data.provide_data]
label_names = [k[0] for k in train_data.provide_label]
mod = MutableModule(sym, data_names=data_names, label_names=label_names,
logger=logger, context=ctx, work_load_list=args.work_load_list,
max_data_shapes=max_data_shape, max_label_shapes=max_label_shape,
fixed_param_prefix=fixed_param_prefix)
# decide training params
# metric
rpn_eval_metric = metric.RPNAccMetric()
rpn_cls_metric = metric.RPNLogLossMetric()
rpn_bbox_metric = metric.RPNL1LossMetric()
eval_metric = metric.RCNNAccMetric()
cls_metric = metric.RCNNLogLossMetric()
bbox_metric = metric.RCNNL1LossMetric()
eval_metrics = mx.metric.CompositeEvalMetric()
for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric]:
eval_metrics.add(child_metric)
# callback
batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent)
means = np.tile(np.array(config.TRAIN.BBOX_MEANS), config.NUM_CLASSES)
stds = np.tile(np.array(config.TRAIN.BBOX_STDS), config.NUM_CLASSES)
epoch_end_callback = callback.do_checkpoint(prefix, means, stds)
# decide learning rate
base_lr = lr
lr_factor = 0.1
lr_epoch = [int(epoch) for epoch in lr_step.split(',')]
lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch]
lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff)))
lr_iters = [int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff]
logger.info('lr %f lr_epoch_diff %s lr_iters %s' % (lr, lr_epoch_diff, lr_iters))
lr_scheduler = mx.lr_scheduler.MultiFactorScheduler(lr_iters, lr_factor)
# optimizer
optimizer_params = {'momentum': 0.9,
'wd': 0.0005,
'learning_rate': lr,
'lr_scheduler': lr_scheduler,
'rescale_grad': (1.0 / batch_size),
'clip_gradient': 5}
# train
mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
batch_end_callback=batch_end_callback, kvstore=args.kvstore,
optimizer='sgd', optimizer_params=optimizer_params,
arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def parse_args():
parser = argparse.ArgumentParser(description='Train Faster R-CNN network')
# general
parser.add_argument('--network', help='network name', default=default.network, type=str)
parser.add_argument('--dataset', help='dataset name', default=default.dataset, type=str)
args, rest = parser.parse_known_args()
generate_config(args.network, args.dataset)
parser.add_argument('--image_set', help='image_set name', default=default.image_set, type=str)
parser.add_argument('--root_path', help='output data folder', default=default.root_path, type=str)
parser.add_argument('--dataset_path', help='dataset path', default=default.dataset_path, type=str)
# training
parser.add_argument('--frequent', help='frequency of logging', default=default.frequent, type=int)
parser.add_argument('--kvstore', help='the kv-store type', default=default.kvstore, type=str)
parser.add_argument('--work_load_list', help='work load for different devices', default=None, type=list)
parser.add_argument('--no_flip', help='disable flip images', action='store_true')
parser.add_argument('--no_shuffle', help='disable random shuffle', action='store_true')
parser.add_argument('--resume', help='continue training', action='store_true')
# e2e
parser.add_argument('--gpus', help='GPU device to train with', default='0', type=str)
parser.add_argument('--pretrained', help='pretrained model prefix', default=default.pretrained, type=str)
parser.add_argument('--pretrained_epoch', help='pretrained model epoch', default=default.pretrained_epoch, type=int)
parser.add_argument('--prefix', help='new model prefix', default=default.e2e_prefix, type=str)
parser.add_argument('--begin_epoch', help='begin epoch of training, use with resume', default=0, type=int)
parser.add_argument('--end_epoch', help='end epoch of training', default=default.e2e_epoch, type=int)
parser.add_argument('--lr', help='base learning rate', default=default.e2e_lr, type=float)
parser.add_argument('--lr_step', help='learning rate steps (in epoch)', default=default.e2e_lr_step, type=str)
args = parser.parse_args()
return args
def main():
args = parse_args()
logger.info('Called with argument: %s' % args)
ctx = [mx.gpu(int(i)) for i in args.gpus.split(',')]
train_net(args, ctx, args.pretrained, args.pretrained_epoch, args.prefix, args.begin_epoch, args.end_epoch,
lr=args.lr, lr_step=args.lr_step)
if __name__ == '__main__':
main()