-
Notifications
You must be signed in to change notification settings - Fork 6
/
svp_challenge.py
executable file
·142 lines (112 loc) · 4.57 KB
/
svp_challenge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
SVP Challenge Solver Command Line Client
"""
import copy
import logging
import pickle as pickler
from collections import OrderedDict
from fpylll.util import gaussian_heuristic
from g6k.algorithms.workout import workout
from g6k.siever import Siever
from g6k.utils.cli import parse_args, run_all, pop_prefixed_params
from g6k.utils.stats import SieveTreeTracer
from g6k.utils.util import load_svpchallenge_and_randomize, load_matrix_file, db_stats
from fpylll import BKZ as BKZ_FPYLLL
from fpylll.tools.bkz_stats import dummy_tracer
def asvp_kernel(arg0, params=None, seed=None):
logger = logging.getLogger('asvp')
# Pool.map only supports a single parameter
if params is None and seed is None:
n, params, seed = arg0
else:
n = arg0
params = copy.copy(params)
load_matrix = params.pop("load_matrix")
pre_bkz = params.pop("pre_bkz")
pump_params = pop_prefixed_params("pump", params)
workout_params = pop_prefixed_params("workout", params)
verbose = params.pop("verbose")
if verbose:
workout_params["verbose"] = True
challenge_seed = params.pop("challenge_seed")
high_prec = params.pop("high_prec")
trace = params.pop("trace")
if load_matrix is None:
A, bkz = load_svpchallenge_and_randomize(n, s=challenge_seed, seed=seed)
if verbose:
print("Loaded challenge dim %d" % n)
if pre_bkz is not None:
par = BKZ_FPYLLL.Param(pre_bkz, strategies=BKZ_FPYLLL.DEFAULT_STRATEGY, max_loops=1)
bkz(par)
else:
A, _ = load_matrix_file(load_matrix, doLLL=False, high_prec=high_prec)
if verbose:
print("Loaded file '%s'" % load_matrix)
g6k = Siever(A, params, seed=seed)
if trace:
tracer = SieveTreeTracer(g6k, root_label=("svp-challenge", n), start_clocks=True)
else:
tracer = dummy_tracer
gh = gaussian_heuristic([g6k.M.get_r(i, i) for i in range(n)])
gamma = params.pop("gamma")
if gamma is None:
goal_r0 = (1.05**2) * gh
else:
goal_r0 = gamma**2 * gh
if verbose:
print("gh = %f, goal_r0/gh = %f, r0/gh = %f" % (gh, goal_r0/gh, sum([x*x for x in A[0]])/gh))
flast = workout(g6k, tracer, 0, n, goal_r0=goal_r0,
pump_params=pump_params, **workout_params)
if verbose:
logger.info("sol %d, %s" % (n, A[0]))
norm = sum([x*x for x in A[0]])
if verbose:
logger.info("norm %.1f ,hf %.5f" % (norm**.5, (norm/gh)**.5))
tracer.exit()
if hasattr(tracer, "trace"):
stat = tracer.trace
stat.data["flast"] = flast
return stat
else:
return None
def asvp():
"""
Run a Workout until 1.05-approx-SVP on matrices with dimensions in ``range(lower_bound, upper_bound, step_size)``.
"""
description = asvp.__doc__
args, all_params = parse_args(description,
load_matrix=None,
pre_bkz=None,
verbose=True,
challenge_seed=0,
workout__dim4free_dec=2,
trace=True)
stats = run_all(asvp_kernel, all_params.values(),
lower_bound=args.lower_bound,
upper_bound=args.upper_bound,
step_size=args.step_size,
trials=args.trials,
workers=args.workers,
seed=args.seed)
inverse_all_params = OrderedDict([(v, k) for (k, v) in all_params.iteritems()])
for (n, params) in stats:
stat = stats[(n, params)]
if stat[0] is None:
logging.info("Trace disabled")
continue
if len(stat) > 0:
cputime = sum([float(node["cputime"]) for node in stat])/len(stat)
walltime = sum([float(node["walltime"]) for node in stat])/len(stat)
flast = sum([float(node["flast"]) for node in stat])/len(stat)
avr_db, max_db = db_stats(stat)
fmt = "%48s :: m: %1d, n: %2d, cputime :%7.4fs, walltime :%7.4fs, flast : %2.2f, avr_max db: 2^%2.2f, max_max db: 2^%2.2f" # noqa
logging.info(fmt % (inverse_all_params[params], params.threads, n, cputime, walltime, flast, avr_db, max_db))
else:
logging.info("Trace disabled")
if args.pickle:
pickler.dump(stats, open("hkz-asvp-%d-%d-%d-%d.sobj" %
(args.lower_bound, args.upper_bound, args.step_size, args.trials), "wb"))
if __name__ == '__main__':
asvp()