-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathClustering.py
152 lines (120 loc) · 5.48 KB
/
Clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
'''
Multi-view clustering and evaluation in MvCLN (CVPR2021)
'''
import numpy as np
import sklearn.metrics as metrics
from sklearn.cluster import KMeans
from munkres import Munkres
import sys
import logging
def Clustering(x_list, y):
# logging.info('******** Clustering ********')
n_clusters = np.size(np.unique(y))
# np.random.seed(1)
x_final_concat = np.concatenate(x_list[:], axis=1)
kmeans_assignments, km = get_cluster_sols(x_final_concat, ClusterClass=KMeans, n_clusters=n_clusters,
init_args={'n_init': 10})
y_preds = get_y_preds(y, kmeans_assignments, n_clusters)
if np.min(y) == 1:
y = y - 1
scores, _ = clustering_metric(y, kmeans_assignments, n_clusters)
ret = {}
ret['kmeans'] = scores
return y_preds, ret
def calculate_cost_matrix(C, n_clusters):
cost_matrix = np.zeros((n_clusters, n_clusters))
# cost_matrix[i,j] will be the cost of assigning cluster i to label j
for j in range(n_clusters):
s = np.sum(C[:, j]) # number of examples in cluster i
for i in range(n_clusters):
t = C[i, j]
cost_matrix[j, i] = s - t
return cost_matrix
def get_cluster_labels_from_indices(indices):
n_clusters = len(indices)
clusterLabels = np.zeros(n_clusters)
for i in range(n_clusters):
clusterLabels[i] = indices[i][1]
return clusterLabels
def get_y_preds(y_true, cluster_assignments, n_clusters):
'''
Computes the predicted labels, where label assignments now
correspond to the actual labels in y_true (as estimated by Munkres)
cluster_assignments: array of labels, outputted by kmeans
y_true: true labels
n_clusters: number of clusters in the dataset
returns: a tuple containing the accuracy and confusion matrix,
in that order
'''
confusion_matrix = metrics.confusion_matrix(y_true, cluster_assignments, labels=None)
# compute accuracy based on optimal 1:1 assignment of clusters to labels
cost_matrix = calculate_cost_matrix(confusion_matrix, n_clusters)
indices = Munkres().compute(cost_matrix)
kmeans_to_true_cluster_labels = get_cluster_labels_from_indices(indices)
if np.min(cluster_assignments) != 0:
cluster_assignments = cluster_assignments - np.min(cluster_assignments)
y_pred = kmeans_to_true_cluster_labels[cluster_assignments]
return y_pred
def classification_metric(y_true, y_pred, average='macro', verbose=False, decimals=4):
# confusion matrix
confusion_matrix = metrics.confusion_matrix(y_true, y_pred)
# ACC
accuracy = metrics.accuracy_score(y_true, y_pred)
accuracy = np.round(accuracy, decimals)
# precision
precision = metrics.precision_score(y_true, y_pred, average=average)
precision = np.round(precision, decimals)
# recall
recall = metrics.recall_score(y_true, y_pred, average=average)
recall = np.round(recall, decimals)
# F-score
f_score = metrics.f1_score(y_true, y_pred, average=average)
f_score = np.round(f_score, decimals)
if verbose:
# print('Confusion Matrix')
# print(confusion_matrix)
logging.info('accuracy: {}, precision: {}, recall: {}, f_measure: {}'.format(accuracy, precision, recall, f_score))
return {'accuracy': accuracy, 'precision': precision, 'recall': recall, 'f_measure': f_score}, confusion_matrix
def clustering_metric(y_true, y_pred, n_clusters, verbose=False, decimals=4):
y_pred_ajusted = get_y_preds(y_true, y_pred, n_clusters)
classification_metrics, confusion_matrix = classification_metric(y_true, y_pred_ajusted)
# AMI
ami = metrics.adjusted_mutual_info_score(y_true, y_pred)
ami = np.round(ami, decimals)
# NMI
nmi = metrics.normalized_mutual_info_score(y_true, y_pred)
nmi = np.round(nmi, decimals)
# ARI
ari = metrics.adjusted_rand_score(y_true, y_pred)
ari = np.round(ari, decimals)
if verbose:
logging.info('AMI: {}, NMI: {}, ARI: {}'.format(ami, nmi, ari))
return dict({'AMI': ami, 'NMI': nmi, 'ARI': ari}, **classification_metrics), confusion_matrix
def get_cluster_sols(x, cluster_obj=None, ClusterClass=None, n_clusters=None, init_args={}):
'''
Using either a newly instantiated ClusterClass or a provided
cluster_obj, generates cluster assignments based on input data
x: the points with which to perform clustering
cluster_obj: a pre-fitted instance of a clustering class
ClusterClass: a reference to the sklearn clustering class, necessary
if instantiating a new clustering class
n_clusters: number of clusters in the dataset, necessary
if instantiating new clustering class
init_args: any initialization arguments passed to ClusterClass
returns: a tuple containing the label assignments and the clustering object
'''
# if provided_cluster_obj is None, we must have both ClusterClass and n_clusters
assert not (cluster_obj is None and (ClusterClass is None or n_clusters is None))
cluster_assignments = None
if cluster_obj is None:
cluster_obj = ClusterClass(n_clusters, **init_args)
for _ in range(10):
try:
cluster_obj.fit(x)
break
except:
print("Unexpected error:", sys.exc_info())
else:
return np.zeros((len(x),)), cluster_obj
cluster_assignments = cluster_obj.predict(x)
return cluster_assignments, cluster_obj