-
Notifications
You must be signed in to change notification settings - Fork 10
/
run_inference_mistral_api.py
247 lines (209 loc) · 10.1 KB
/
run_inference_mistral_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
'''
Adapted from https://github.com/kojima-takeshi188/zero_shot_cot
'''
import argparse
from utils import *
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import os
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
def main():
args = parse_arguments()
print('*****************************')
print(args)
print('*****************************')
fix_seed(args.random_seed)
decoder = Decoder()
print("setup data loader ...")
dataloader = setup_data_loader(args)
print_now()
if args.method == "few_shot":
demo = create_demo_text(args, cot_flag=False)
elif args.method == "few_shot_cot" or args.method == "auto_cot":
demo = create_demo_text(args, cot_flag=True)
else:
pass
model = "open-mixtral-8x7b"
client = MistralClient(api_key=os.getenv("MISTRAL_API_KEY"))
def decode_for_mistral(args, x, max_length):
while True:
try:
messages = [
ChatMessage(role="user", content=x),
]
chat_response = client.chat(
model=model,
messages=messages,
max_tokens=max_length,
temperature=0,
)
return chat_response.choices[0].message.content
except KeyboardInterrupt:
print('Interrupted')
try:
sys.exit(0)
except SystemExit:
os._exit(0)
except Exception as e:
if type(e).__name__ == 'InvalidRequestError':
raise ValueError("Raise error to - rcd")
print(e)
time.sleep(2)
continue
total = 0
correct_list = []
with open(args.output_dir, "a") as wp:
for i, data in enumerate(dataloader):
if i < args.resume_id - 1:
# if i < 297:
continue
output_line = {}
print('*************************')
print("{}st data".format(i+1) + " / " + str(len(dataloader.dataset)))
# Prepare question template ...
x, y = data
x = "Q: " + x[0] + "\n" + "A:"
y = y[0].strip()
# print(x, y)
output_line["question"] = x
output_line["gold_ans"] = y
if args.method == "zero_shot":
x = x + " " + args.direct_answer_trigger_for_zeroshot
elif args.method == "zero_shot_cot":
x = x + " " + args.cot_trigger
elif args.method == "few_shot":
x = demo + x
elif args.method == "few_shot_cot":
x = demo + x
elif args.method == "auto_cot":
x = demo + x + " " + args.cot_trigger
else:
raise ValueError("method is not properly defined ...")
# Answer experiment by generating text ...
max_length = args.max_length_cot if "cot" in args.method else args.max_length_direct
z = decode_for_mistral(args, x, max_length)
output_line["rationale"] = z
# Answer extraction for zero-shot-cot ...
if args.method == "zero_shot_cot":
z2 = x + z + " " + args.direct_answer_trigger_for_zeroshot_cot
max_length = args.max_length_direct
pred = decode_for_mistral(args, z2, max_length)
print(z2 + pred)
else:
pred = z
print(x + pred)
# Clensing of predicted answer ...
pred = answer_cleansing(args, pred)
output_line["pred_ans"] = pred
output_line["wrap_que"] = x
output_json = json.dumps(output_line)
wp.write(output_json + '\n')
# Choose the most frequent answer from the list ...
print("pred : {}".format(pred))
print("GT : " + y)
print('*************************')
# Checking answer ...
correct = (np.array([pred]) == np.array([y])).sum().item()
correct_list.append(correct)
total += 1 #np.array([y]).size(0)
if (args.limit_dataset_size != 0) and ((i+1) >= args.limit_dataset_size):
break
#raise ValueError("Stop !!")
accuracy = (sum(correct_list) * 1.0 / total) * 100
print("accuracy : {}".format(accuracy))
# Calculate accuracy ...
accuracy = (sum(correct_list) * 1.0 / total) * 100
print("accuracy : {}".format(accuracy))
def parse_arguments():
parser = argparse.ArgumentParser(description="Zero-shot-CoT")
parser.add_argument("--random_seed", type=int, default=1, help="random seed")
parser.add_argument(
"--dataset", type=str, default="multiarith", choices=["aqua", "gsm8k", "commonsensqa", "addsub", "multiarith", "strategyqa", "svamp", "singleeq", "coin_flip", "last_letters"], help="dataset used for experiment"
)
parser.add_argument(
"--demo_path", type=str, default="demos/multiarith_manual", help="pre-generated demos used for experiment"
)
parser.add_argument(
"--resume_id", type=int, default=0, help="resume from which question id (current line number in the output file), if the experiment fails accidently (e.g., network error)"
)
parser.add_argument("--minibatch_size", type=int, default=1, choices=[1], help="minibatch size should be 1 because GPT-3 API takes only 1 input for each request")
parser.add_argument("--max_num_worker", type=int, default=0, help="maximum number of workers for dataloader")
parser.add_argument(
"--model", type=str, default="gpt3-xl", choices=["gpt3", "gpt3-medium", "gpt3-large", "gpt3-xl", "code-davinci-002", "gpt-3.5-turbo-0301", "gpt-3.5-turbo","gpt-3.5-turbo-16k-0613"], help="model used for decoding. Note that 'gpt3' are the smallest models."
)
parser.add_argument(
"--method", type=str, default="auto_cot", choices=["zero_shot", "zero_shot_cot", "few_shot", "few_shot_cot", "auto_cot"], help="method"
)
parser.add_argument(
"--output_dir", type=str, default="experiment/multiarith", help="output directory"
)
parser.add_argument(
"--max_length_cot", type=int, default=512, help="maximum length of output tokens by model for reasoning extraction"
)
parser.add_argument(
"--max_length_direct", type=int, default=32, help="maximum length of output tokens by model for answer extraction"
)
parser.add_argument(
"--limit_dataset_size", type=int, default=0, help="whether to limit test dataset size. if 0, the dataset size is unlimited and we use all the samples in the dataset for testing."
)
parser.add_argument(
"--api_time_interval", type=float, default=0, help="sleep between runs to avoid exceeding the rate limit of openai api"
)
parser.add_argument(
"--temperature", type=float, default=0, help="temperature for GPT-3"
)
parser.add_argument(
"--log_dir", type=str, default="./log/", help="log directory"
)
parser.add_argument(
"--cuda_device", type=int, default=0, help="cuda device"
)
args = parser.parse_args()
if args.dataset == "aqua":
args.dataset_path = "./dataset/AQuA/test.json"
args.direct_answer_trigger = "\nTherefore, among A through E, the answer is"
elif args.dataset == "gsm8k":
args.dataset_path = "./dataset/grade-school-math/test.jsonl"
args.direct_answer_trigger = "\nTherefore, the answer (arabic numerals) is"
elif args.dataset == "commonsensqa":
args.dataset_path = "./dataset/CommonsenseQA/dev_rand_split.jsonl"
args.direct_answer_trigger = "\nTherefore, among A through E, the answer is"
args.plausible_answer_trigger = "Choose the most plausible answer from among choices A through E."
elif args.dataset == "addsub":
args.dataset_path = "./dataset/AddSub/AddSub.json"
args.direct_answer_trigger = "\nTherefore, the answer (arabic numerals) is"
elif args.dataset == "multiarith":
args.dataset_path = "./dataset/MultiArith/MultiArith.json"
args.direct_answer_trigger = "\nTherefore, the answer (arabic numerals) is"
elif args.dataset == "strategyqa":
args.dataset_path = "./dataset/StrategyQA/task.json"
args.direct_answer_trigger = "\nTherefore, the answer (Yes or No) is"
elif args.dataset == "svamp":
args.dataset_path = "./dataset/SVAMP/SVAMP.json"
args.direct_answer_trigger = "\nTherefore, the answer (arabic numerals) is"
elif args.dataset == "singleeq":
args.dataset_path = "./dataset/SingleEq/questions.json"
args.direct_answer_trigger = "\nTherefore, the answer (arabic numerals) is"
elif args.dataset == "bigbench_date":
args.dataset_path = "./dataset/Bigbench_Date/task.json"
args.direct_answer_trigger = "\nTherefore, among A through F, the answer is"
elif args.dataset == "object_tracking":
args.dataset_path = "./dataset/Bigbench_object_tracking/task.json"
args.direct_answer_trigger = "\nTherefore, among A through C, the answer is"
elif args.dataset == "coin_flip":
args.dataset_path = "./dataset/coin_flip/coin_flip.json"
args.direct_answer_trigger = "\nTherefore, the answer (Yes or No) is"
elif args.dataset == "last_letters":
args.dataset_path = "./dataset/last_letters/last_letters.json"
args.direct_answer_trigger = "\nTherefore, the answer is"
else:
raise ValueError("dataset is not properly defined ...")
# "Therefore, the answer ..." -> "The answer ..."
trigger = args.direct_answer_trigger.replace("\nTherefore, ", "")
args.direct_answer_trigger_for_zeroshot = trigger[0].upper() + trigger[1:]
args.direct_answer_trigger_for_zeroshot_cot = args.direct_answer_trigger
args.direct_answer_trigger_for_fewshot = "The answer is"
args.cot_trigger = "Let's think step by step."
return args
if __name__ == "__main__":
main()