-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathSACSegmentation.lua
238 lines (200 loc) · 6.1 KB
/
SACSegmentation.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
local ffi = require 'ffi'
local torch = require 'torch'
local utils = require 'pcl.utils'
local pcl = require 'pcl.PointTypes'
local SACSegmentation = torch.class('pcl.SACSegmentation', pcl)
local SACSegmentationFromNormals = torch.class('pcl.SACSegmentationFromNormals', 'pcl.SACSegmentation', pcl)
local SACSegmentation_func_by_type = {}
local SACSegmentationFromNormals_func_by_type = {}
pcl.SAC =
{
RANSAC = 0,
LMEDS = 1,
MSAC = 2,
RRANSAC = 3,
RMSAC = 4,
MLESAC = 5,
PROSAC = 6,
}
pcl.SACMODEL =
{
PLANE = 0,
LINE = 1,
CIRCLE2D = 2,
CIRCLE3D = 3,
SPHERE = 4,
CYLINDER = 5,
CONE = 6,
TORUS = 7,
PARALLEL_LINE = 8,
PERPENDICULAR_PLANE = 9,
PARALLEL_LINES = 10,
NORMAL_PLANE = 11,
NORMAL_SPHERE = 12,
REGISTRATION = 13,
REGISTRATION_2D = 14,
PARALLEL_PLANE = 15,
NORMAL_PARALLEL_PLANE = 16,
STICK = 17
}
local function init()
local SACSegmentation_method_names = {
'new',
'delete',
'SACSegmentation_ptr',
'setInputCloud',
'setIndices',
'setMethodType',
'getMethodType',
'setModelType',
'getModelType',
'setDistanceThreshold',
'getDistanceThreshold',
'setMaxIterations',
'getMaxIterations',
'setProbability',
'getProbability',
'setOptimizeCoefficients',
'getOptimizeCoefficients',
'setSamplesMaxDist_KdTree',
'setSamplesMaxDist_Octree',
'setRadiusLimits',
'setAxis',
'getAxis',
'setEpsAngle',
'getEpsAngle',
'segment'
}
for k,v in pairs(utils.type_key_map) do
SACSegmentation_func_by_type[k] = utils.create_typed_methods("pcl_SACSegmentation_TYPE_KEY_", SACSegmentation_method_names, v)
end
local SACSegmentationFromNormals_method_names = {
'new',
'delete',
'SACSegmentationFromNormals_ptr',
'SACSegmentation_ptr',
'setInputNormals',
'setNormalDistanceWeight',
'setMinMaxOpeningAngle',
'setDistanceFromOrigin'
}
for k,v in pairs(utils.type_key_map) do
SACSegmentationFromNormals_func_by_type[k] = utils.create_typed_methods("pcl_SACSegmentationFromNormals_TYPE_KEY_", SACSegmentationFromNormals_method_names, v)
end
end
init()
function SACSegmentation:__init(pointType)
self.pointType = pcl.pointType(pointType or pcl.PointXYZ)
self.f = SACSegmentation_func_by_type[self.pointType]
self.h = self.f.new()
self.p = self.f.SACSegmentation_ptr(self.h)
end
function SACSegmentation:handle()
return self.h
end
function SACSegmentation:SACSegmentation_ptr()
return self.p
end
function SACSegmentation:setInputCloud(cloud)
self.f.setInputCloud(self.p, cloud:cdata())
end
function SACSegmentation:setIndices(indices)
self.f.setIndices(self.p, indices:cdata())
end
function SACSegmentation:setMethodType(method)
self.f.setMethodType(self.p, method)
end
function SACSegmentation:getMethodType()
return self.f.getMethodType(self.p)
end
function SACSegmentation:setModelType(model)
self.f.setModelType(self.p, model)
end
function SACSegmentation:getModelType()
return self.f.getModelType(self.p)
end
function SACSegmentation:setDistanceThreshold(threshold)
self.f.setDistanceThreshold(self.p, threshold)
end
function SACSegmentation:getDistanceThreshold()
return self.f.getDistanceThreshold(self.p)
end
function SACSegmentation:setMaxIterations(max_iterations)
self.f.setMaxIterations(self.p, max_iterations)
end
function SACSegmentation:getMaxIterations()
return self.f.getMaxIterations(self.p)
end
function SACSegmentation:setProbability(probability)
self.f.setProbability(self.p, probability)
end
function SACSegmentation:getProbability()
return self.f.getProbability(self.p)
end
function SACSegmentation:setOptimizeCoefficients(optimize)
self.f.setOptimizeCoefficients(self.p, optimize)
end
function SACSegmentation:getOptimizeCoefficients()
return self.f.getOptimizeCoefficients(self.p)
end
function SACSegmentation:setSamplesMaxDist(radius, search)
if torch.isTypeOf(search, pcl.KdTree) then
self.f.setSamplesMaxDist_KdTree(self.p, radius, search:cdata())
elseif torch.isTypeOf(search, pcl.Octree) then
self.f.setSamplesMaxDist_Octree(self.p, radius, search:cdata())
else
error("unsupported search method")
end
end
function SACSegmentation:setRadiusLimits(min_radius, max_radius)
self.f.setRadiusLimits(self.p, min_radius, max_radius)
end
function SACSegmentation:setAxis(axis)
self.f.setAxis(self.p, axis:cdata())
end
function SACSegmentation:getAxis(result)
result = result or torch.FloatTensor()
self.f.getAxis(self.p, result:cdata())
return result
end
function SACSegmentation:setEpsAngle(ea)
self.f.setEpsAngle(self.p, ea)
end
function SACSegmentation:getEpsAngle()
return self.f.getEpsAngle(self.p)
end
function SACSegmentation:segment(inliers, coefficients)
inliers = inliers or pcl.Indices()
coefficients = coefficients or torch.FloatTensor()
self.f.segment(self.p, inliers:cdata(), coefficients:cdata())
return coefficients, inliers
end
--[[
SACSegmentationFromNormals
]]
function SACSegmentationFromNormals:__init(pointType)
self.pointType = pcl.pointType(pointType or pcl.PointXYZ)
self.f = SACSegmentation_func_by_type[self.pointType]
self.f2 = SACSegmentationFromNormals_func_by_type[self.pointType]
self.h = self.f2.new()
self.p = self.f2.SACSegmentation_ptr(self.h)
self.pn = self.f2.SACSegmentationFromNormals_ptr(self.h)
end
function SACSegmentationFromNormals:handle()
return self.h
end
function SACSegmentationFromNormals:SACSegmentationFromNormals_ptr()
return self.pn
end
function SACSegmentationFromNormals:setInputNormals(normals)
self.f2.setInputNormals(self.pn, normals:cdata())
end
function SACSegmentationFromNormals:setNormalDistanceWeight(distance_weight)
self.f2.setNormalDistanceWeight(self.pn, distance_weight)
end
function SACSegmentationFromNormals:setMinMaxOpeningAngle(min_angle, max_angle)
self.f2.setMinMaxOpeningAngle(self.pn, min_angle, max_angle)
end
function SACSegmentationFromNormals:setDistanceFromOrigin(d)
self.f2.setDistanceFromOrigin(self.pn, d)
end