-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
286 lines (218 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Author : Xinhao Mei @CVSSP, University of Surrey
# @E-mail : x.mei@surrey.ac.uk
import platform
import torch
import torch.nn as nn
import os
import time
import sys
from loguru import logger
import argparse
from tqdm import tqdm
from pathlib import Path
from data_handling.audiocaps_dataset import get_audiocaps_loader
from tools.config_loader import get_config
from tools.utils import *
from tools.file_io import load_pickle_file
from pprint import PrettyPrinter
from warmup_scheduler import GradualWarmupScheduler
from eval_metrics import evaluate_metrics
from models.TransModel import ACT
from tools.beam import beam_decode
def train():
start_time = time.time()
batch_losses = AverageMeter()
model.train()
for batch_idx, train_batch in tqdm(enumerate(training_data), total=len(training_data)):
src, tgt, tgt_len, f_names, captions = train_batch
src = src.to(device)
tgt = tgt.to(device)
tgt_pad_mask = set_tgt_padding_mask(tgt, tgt_len)
optimizer.zero_grad()
y_hat = model(src, tgt, target_padding_mask=tgt_pad_mask)
tgt = tgt[:, 1:] # exclude <sos>
y_hat = y_hat.transpose(0, 1) # batch x words_len x ntokens
y_hat = y_hat[:, :tgt.size()[1], :] # truncate to the same length with target
loss = criterion(y_hat.contiguous().view(-1, y_hat.size()[-1]),
tgt.contiguous().view(-1))
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), config.training.clip_grad)
optimizer.step()
batch_losses.update(loss.cpu().item())
elapsed_time = time.time() - start_time
epoch_loss = batch_losses.avg
current_lr = [param_group['lr'] for param_group in optimizer.param_groups][0]
main_logger.info('epoch: {}, train_loss: {:.4f}, time elapsed: {:.4f}, lr:{:02.2e}'.
format(epoch, epoch_loss, elapsed_time, current_lr))
def eval_greedy(data):
model.eval()
with torch.no_grad():
start_time = time.time()
y_hat_all = []
ref_captions_dict = []
file_names_all = []
for batch_idx, eval_batch in tqdm(enumerate(data), total=len(data)):
src, target_dicts, file_names = eval_batch
src = src.to(device)
output = greedy_decode(model, src, sos_ind=sos_ind, eos_ind=eos_ind)
output = output[:, 1:].int()
y_hat_batch = torch.zeros(output.shape).fill_(eos_ind).to(device)
for i in range(output.shape[0]): # batch_size
for j in range(output.shape[1]):
y_hat_batch[i, j] = output[i, j]
if output[i, j] == eos_ind:
break
elif j == output.shape[1] - 1:
y_hat_batch[i, j] = eos_ind
y_hat_batch = y_hat_batch.int()
y_hat_all.extend(y_hat_batch.cpu())
ref_captions_dict.extend(target_dicts)
file_names_all.extend(file_names)
eval_time = time.time() - start_time
captions_pred, captions_gt = decode_output(y_hat_all, ref_captions_dict,
file_names_all, words_list)
greedy_metrics = evaluate_metrics(captions_pred, captions_gt)
spider = greedy_metrics['spider']['score']
cider = greedy_metrics['cider']['score']
main_logger.info(f'cider: {cider:7.4f}')
main_logger.info(f'Spider score using greedy search: {spider:7.4f}, eval time: {eval_time:.4f}')
def eval_beam(data, beam_size):
model.eval()
with torch.no_grad():
start_time = time.time()
y_hat_all = []
ref_captions_dict = []
file_names_all = []
for batch_idx, eval_batch in tqdm(enumerate(data), total=len(data)):
src, target_dicts, file_names = eval_batch
src = src.to(device)
output = beam_decode(src, model, sos_ind, eos_ind, beam_width=beam_size)
output = output[:, 1:].int()
y_hat_batch = torch.zeros(output.shape).fill_(eos_ind).to(device)
for i in range(output.shape[0]): # batch_size
for j in range(output.shape[1]):
y_hat_batch[i, j] = output[i, j]
if output[i, j] == eos_ind:
break
elif j == output.shape[1] - 1:
y_hat_batch[i, j] = eos_ind
y_hat_batch = y_hat_batch.int()
y_hat_all.extend(y_hat_batch.cpu())
ref_captions_dict.extend(target_dicts)
file_names_all.extend(file_names)
eval_time = time.time() - start_time
captions_pred, captions_gt = decode_output(y_hat_all, ref_captions_dict, file_names_all, words_list, beam=True)
beam_metrics = evaluate_metrics(captions_pred, captions_gt)
spider = beam_metrics['spider']['score']
cider = beam_metrics['cider']['score']
main_logger.info(f'cider: {cider:7.4f}')
main_logger.info(f'Spider score using beam search (beam size:{beam_size}): {spider:7.4f}, eval time: {eval_time:.4f}')
spiders.append(spider)
if config.mode != 'eval':
if beam_size == 3 and (epoch % 5) == 0:
for metric, values in beam_metrics.items():
main_logger.info(f'beam search (size 3): {metric:<7s}: {values["score"]:7.4f}')
if spider >= max(spiders):
torch.save({
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"beam_size": beam_size,
"epoch": epoch,
}, str(model_output_dir) + '/best_model.pth'.format(epoch))
else:
if spider >= max(spiders):
eval_metrics['metrics'] = beam_metrics
eval_metrics['beam_size'] = beam_size
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
parser = argparse.ArgumentParser(description='Settings for ACT training')
parser.add_argument('-n', '--exp_name', type=str, default='exp1', help='name of the experiment')
args = parser.parse_args()
config = get_config()
setup_seed(config.training.seed)
exp_name = args.exp_name
# output setting
model_output_dir = Path('outputs', exp_name, 'model')
log_output_dir = Path('outputs', exp_name, 'logging')
model_output_dir.mkdir(parents=True, exist_ok=True)
log_output_dir.mkdir(parents=True, exist_ok=True)
logger.remove()
logger.add(sys.stdout, format='{time: YYYY-MM-DD at HH:mm:ss} | {message}', level='INFO',
filter=lambda record: record['extra']['indent'] == 1)
logger.add(log_output_dir.joinpath('output.txt'), format='{time: YYYY-MM-DD at HH:mm:ss} | {message}', level='INFO',
filter=lambda record: record['extra']['indent'] == 1)
logger.add(str(log_output_dir) + '/captions.txt', format='{message}', level='INFO',
filter=lambda record: record['extra']['indent'] == 2,
rotation=rotation_logger)
logger.add(str(log_output_dir) + '/beam_captions.txt', format='{message}', level='INFO',
filter=lambda record: record['extra']['indent'] == 3,
rotation=rotation_logger)
main_logger = logger.bind(indent=1)
printer = PrettyPrinter()
device, device_name = (torch.device('cuda'),
torch.cuda.get_device_name(torch.cuda.current_device())) \
if torch.cuda.is_available() else ('cpu', platform.processor())
main_logger.info(f'Process on {device_name}')
words_list = load_pickle_file(config.path.vocabulary)
training_data = get_audiocaps_loader('train', config)
validation_data = get_audiocaps_loader('val', config)
test_data = get_audiocaps_loader('test', config)
ntokens = len(words_list)
sos_ind = words_list.index('<sos>')
eos_ind = words_list.index('<eos>')
main_logger.info('Training setting:\n'
f'{printer.pformat(config)}')
model = ACT(config, ntokens)
model.to(device)
main_logger.info(f'Model:\n{model}\n')
main_logger.info('Total number of parameters:'
f'{sum([i.numel() for i in model.parameters()])}')
main_logger.info(f'Len of training data: {len(training_data)}')
main_logger.info(f'Len of validation data: {len(validation_data)}')
main_logger.info(f'Len of test data: {len(test_data)}')
if config.training.label_smoothing:
criterion = LabelSmoothingLoss(ntokens, smoothing=0.1)
else:
criterion = nn.CrossEntropyLoss()
spiders = []
if config.mode == 'train':
main_logger.info('Training mode.')
optimizer = torch.optim.Adam(params=model.parameters(),
lr=config.training.lr, weight_decay=1e-6)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 10, 0.1)
scheduler_warmup = GradualWarmupScheduler(optimizer, multiplier=1, total_epoch=5, after_scheduler=scheduler)
epochs = config.training.epochs
ep = 1
# warm up issue
optimizer.zero_grad()
optimizer.step()
for epoch in range(ep, epochs + 1):
scheduler_warmup.step(epoch)
main_logger.info(f'Training epoch {epoch}...')
train()
main_logger.info('Metrics on validation set')
eval_greedy(validation_data)
eval_beam(validation_data, beam_size=2)
eval_beam(validation_data, beam_size=3)
main_logger.info('Training done.')
best_checkpoint = torch.load(str(model_output_dir) + '/best_model.pth')
model.load_state_dict(best_checkpoint['model'])
best_epoch = best_checkpoint['epoch']
main_logger.info(f'Best checkpoint in {best_epoch} th epoch.')
main_logger.info('Metrics on test set')
eval_greedy(test_data)
eval_beam(test_data, beam_size=2)
eval_beam(test_data, beam_size=3)
main_logger.info('Evaluation done.')
elif config.mode == 'eval':
eval_metrics = {}
main_logger.info('Evaluation mode')
model.load_state_dict(torch.load(config.path.eval_model)['model'])
main_logger.info(f'Weights loaded from {config.path.eval_model}')
eval_greedy(test_data)
eval_beam(test_data, beam_size=2)
eval_beam(test_data, beam_size=3)
main_logger.info(f"Best metrics with beam size {eval_metrics['beam_size']}:")
for metric, values in eval_metrics['metrics'].items():
main_logger.info(f'{metric:<7s}: {values["score"]:7.4f}')