-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbatch_start_processing.py
46 lines (38 loc) · 1.6 KB
/
batch_start_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import logging
import json
import azure.functions as func
from utilities.helpers.embedders.integrated_vectorization_embedder import (
IntegratedVectorizationEmbedder,
)
from utilities.helpers.env_helper import EnvHelper
from utilities.helpers.azure_blob_storage_client import (
AzureBlobStorageClient,
create_queue_client,
)
bp_batch_start_processing = func.Blueprint()
logger = logging.getLogger(__name__)
logger.setLevel(level=os.environ.get("LOGLEVEL", "INFO").upper())
@bp_batch_start_processing.route(route="BatchStartProcessing")
def batch_start_processing(req: func.HttpRequest) -> func.HttpResponse:
logger.info("Requested to start processing all documents received")
env_helper: EnvHelper = EnvHelper()
# Set up Blob Storage Client
azure_blob_storage_client = AzureBlobStorageClient()
# Get all files from Blob Storage
files_data = azure_blob_storage_client.get_all_files()
files_data = list(map(lambda x: {"filename": x["filename"]}, files_data))
if env_helper.AZURE_SEARCH_USE_INTEGRATED_VECTORIZATION:
reprocess_integrated_vectorization(env_helper)
else:
# Send a message to the queue for each file
queue_client = create_queue_client()
for fd in files_data:
queue_client.send_message(json.dumps(fd).encode("utf-8"))
return func.HttpResponse(
f"Conversion started successfully for {len(files_data)} documents.",
status_code=200,
)
def reprocess_integrated_vectorization(env_helper: EnvHelper):
indexer_embedder = IntegratedVectorizationEmbedder(env_helper)
indexer_embedder.reprocess_all()