Skip to content

Latest commit

 

History

History
108 lines (64 loc) · 4.32 KB

README.md

File metadata and controls

108 lines (64 loc) · 4.32 KB

PUDistill

PyTorch code for the following IJCNN 2021 paper:

Title: Training Classifiers that are Universally Robust to All Label Noise Levels.

Authors: Jingyi Xu, Tony Q. S. Quek, and Kai Fong Ernest Chong

To train classifiers that are universally robust to all noise levels, and that are not sensitive to any variation in the noise model, we propose a distillation-based framework that incorporates a new subcategory of Positive-Unlabeled learning. In particular, we shall assume that a small subset of any given noisy dataset is known to have correct labels, which we treat as “positive”, while the remaining noisy subset is treated as “unlabeled”. Our framework consists of the following 3 steps: (1) We shall generate, via iterative updates, an augmented clean subset with additional reliable “positive” samples filtered from “unlabeled” samples; (2) We shall train a teacher model on this larger augmented clean set; (3) With the guidance of the teacher model, we then train a student model on the whole dataset.

Requirements

  • Python 3.6
  • Pytorch 1.4.0

Training

Hyper-parameters:

  • CIFAR-10
    • N_bagging (number of binary classifiers for each class): 20
    • K_iteration (number of iterations to augment clean set): 10
    • threshold (decision threshold of binary classifiers): 0.9
    • add_criterion (criterion of moving an unsure sample to clean set): 19

    For symmetric noise:

Parameter\Noise Level 30% 40% 50% 60% 70% 80% 90%
student_lambda 0.4 0.5 0.5 0.5 0.9 0.9 0.9
eta 0.8 0.9 0.6 0.5 0.6 0.5 0.5

​ For asymmetric noise:

Parameter\Noise Level 30% 40% 50% 60% 70% 80% 90%
student_lambda 0.4 0.4 0.5 0.7 0.8 0.9 0.9
eta 0.8 0.6 0.5 0.5 0.5 0.5 0.5
  • Clothing1M
    • N_bagging: 10
    • K_iteration: 6
    • threshold: 0.95
    • add_criterion: 10
    • student_lambda: 0.5
    • eta: 0.8

Examples:

  • CIFAR-10 (given 10% clean set, symmetric noise level=70%):
python generate_clean_set_cifar.py --clean_data_ratio 0.1 --threshold 0.9 --add_criterion 19 --N_bagging 20 --K_iteration 10
python teacher_cifar.py --n 5 --mixup --entropy_reg
python student_cifar.py  --noise_type syn --noise_level 0.7 --label_type soft_bootstrap --student_lambda 0.8

(Use --noise_type asyn for asymmetric noise.)

  • Clothing1M:
python generate_clean_set_clothing.py --threshold 0.95 --add_criterion 9 --N_bagging 10 --K_iteration 5
python teacher_clothing.py --n 5 --mixup
python student_clothing.py --label_type soft_bootstrap --student_lambda 0.8

Results

To ensure reproducibility, we have repeated our experiments for CIFAR10, and we report below the accuracies obtained for both symmetric and asymmetric semantic noise. The values reported here may be higher than the values reported in the paper. For our experiments on Clothing1M, we report the accuracy given in the paper.

Accuracies on CIFAR10 with synthetic symmetric noise (average of 5 trials)

Algorithm\Noise Level 30% 40% 50% 60% 70% 80% 90%
SOTA 95.95 94.66 94.85 94.89 94.14 93.21 61.62
Our Method 90.67 89.46 88.39 87.34 86.31 85.92 85.73

Accuracies on CIFAR10 with synthetic asymmetric semantic noise (average of 5 trials)

Algorithm\Noise Level 30% 40% 50% 60% 70% 80% 90%
SOTA 93.95 89.56 84.56 78.21 76.70 76.44 76.00
Our Method 90.76 89.63 88.56 87.53 86.80 86.32 85.97

Accuracies on Clothing1M

Algorithm Accuracy
SOTA 74.76
Our Method 77.70