This example trains a multi-layer RNN (Elman, GRU, or LSTM) on a language modeling task. By default, the training script uses the Wikitext-2 dataset, provided. The trained model can then be used by the generate script to generate new text.
python main.py --cuda --epochs 6 # Train a LSTM on Wikitext-2 with CUDA
python main.py --cuda --epochs 6 --tied # Train a tied LSTM on Wikitext-2 with CUDA
python main.py --cuda --epochs 6 --model Transformer --lr 5
# Train a Transformer model on Wikitext-2 with CUDA
python main.py --cuda --tied # Train a tied LSTM on Wikitext-2 with CUDA for 40 epochs
python generate.py # Generate samples from the trained LSTM model.
python generate.py --cuda --model Transformer
# Generate samples from the trained Transformer model.
The model uses the nn.RNN
module (and its sister modules nn.GRU
and nn.LSTM
)
which will automatically use the cuDNN backend if run on CUDA with cuDNN installed.
During training, if a keyboard interrupt (Ctrl-C) is received, training is stopped and the current model is evaluated against the test dataset.
The main.py
script accepts the following arguments:
optional arguments:
-h, --help show this help message and exit
--data DATA location of the data corpus
--model MODEL type of recurrent net (RNN_TANH, RNN_RELU, LSTM, GRU,
Transformer)
--emsize EMSIZE size of word embeddings
--nhid NHID number of hidden units per layer
--nlayers NLAYERS number of layers
--lr LR initial learning rate
--clip CLIP gradient clipping
--epochs EPOCHS upper epoch limit
--batch_size N batch size
--bptt BPTT sequence length
--dropout DROPOUT dropout applied to layers (0 = no dropout)
--tied tie the word embedding and softmax weights
--seed SEED random seed
--cuda use CUDA
--log-interval N report interval
--save SAVE path to save the final model
--onnx-export ONNX_EXPORT
path to export the final model in onnx format
--nhead NHEAD the number of heads in the encoder/decoder of the
transformer model
With these arguments, a variety of models can be tested. As an example, the following arguments produce slower but better models:
python main.py --cuda --emsize 650 --nhid 650 --dropout 0.5 --epochs 40
python main.py --cuda --emsize 650 --nhid 650 --dropout 0.5 --epochs 40 --tied
python main.py --cuda --emsize 1500 --nhid 1500 --dropout 0.65 --epochs 40
python main.py --cuda --emsize 1500 --nhid 1500 --dropout 0.65 --epochs 40 --tied