-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtf_main_autofield.py
128 lines (118 loc) · 4.75 KB
/
tf_main_autofield.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#encoding=utf-8
from torch.utils.tensorboard import SummaryWriter
import wandb
import sys
import time
import os
import __init__
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
sys.path.append(__init__.config['data_path']) # add your data path here
from datasets import as_dataset
from tf_trainer import Trainer, create_logger
from irazor_models import *
import traceback
import random
import numpy as np
import datetime
from glob import glob
data_name = 'avazu'
dataset = as_dataset(data_name)
backend = 'tf'
batch_size = 5000
train_data_param = {
'gen_type': 'train',
'random_sample': True,
'batch_size': batch_size,
'split_fields': False,
'on_disk': True,
'squeeze_output': True,
}
test_data_param = {
'gen_type': 'test',
'random_sample': False,
'batch_size': batch_size,
'split_fields': False,
'on_disk': True,
'squeeze_output': True,
}
def seed_tensorflow(seed=1217):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
tf.compat.v1.set_random_seed(seed)
def run_one_model(model=None,learning_rate=1e-3,decay_rate=1.0,epsilon=1e-8,ep=5, grda_c=0.005,
grda_mu=0.51, learning_rate2=1e-3, decay_rate2=1.0, retrain_stage=False, writer=None, logger=None):
n_ep = ep * 1
train_param = {
'opt1': 'adagrad',
'opt2': 'adagrad',
'loss': 'weight',
'pos_weight': 1.0,
'n_epoch': n_ep,
'train_per_epoch': dataset.train_size / ep, # split training data
'test_per_epoch': dataset.test_size,
'early_stop_epoch': int(0.5*ep),
'batch_size': batch_size,
'learning_rate': learning_rate,
'decay_rate': decay_rate,
'learning_rate2': learning_rate2,
'decay_rate2': decay_rate2,
'epsilon':epsilon,
'load_ckpt': False,
'ckpt_time': 10000,
'grda_c': grda_c,
'grda_mu': grda_mu,
'test_every_epoch': 1,
'retrain_stage': retrain_stage,
'writer': writer,
'logger': logger,
}
train_gen = dataset.batch_generator(train_data_param)
test_gen = dataset.batch_generator(test_data_param)
trainer = Trainer(model=model, train_gen=train_gen, test_gen=test_gen, **train_param)
trainer.fit()
trainer.session.close()
import math
if __name__=="__main__":
# general parameter
learning_rate = 0.01
split_epoch = 4
mlp = [700]*5+[1]
seed_tensorflow(seed=1217)
l2 = 0
model = autofieldPretrain(init='xavier', num_inputs=dataset.max_length, input_emb_size_config=[30]*dataset.max_length, input_feature_min=dataset.feat_min, input_feat_num=dataset.feat_sizes, l2_weight=l2, l2_bias=l2, target_vec_sizes=[0,30], temperature=0.05, mlp=mlp, bn=False, ln=True)
# Setup an experiment folder:
base_dir = "/root/results/"
model_string_name = "autofield_pretrain"
os.makedirs(base_dir + model_string_name, exist_ok=True)
results_dir = os.path.join(base_dir, model_string_name, data_name)
os.makedirs(results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders)
experiment_index = len(glob(f"{results_dir}/*"))
experiment_dir = f"{results_dir}/{experiment_index:03d}-{mlp}-bs-{batch_size}-l2_loss_{l2 != 0}" # Create an experiment folder
#checkpoint_dir = f"{experiment_dir}/checkpoints" # Stores saved model checkpoints
#os.makedirs(checkpoint_dir, exist_ok=True)
os.makedirs(experiment_dir+"/tf_log", exist_ok=True)
writer = SummaryWriter(experiment_dir+"/tf_log")
logger = create_logger(experiment_dir)
logger.info(f"Experiment directory created at {experiment_dir}")
logger.info(f"Batchsize: {batch_size}")
now=datetime.datetime.now()
time_label = now.strftime("%Y-%m-%d %H:%M:%S")
wandb.init(project="irazor", group=data_name+"-"+model_string_name, tags=str(batch_size), entity="yao-yao", dir="/root/wandb/", name=f"{data_name}-BS-{batch_size}-{experiment_index:03d}-{model_string_name}-"+time_label)
# define a metric we are interested in the minimum of
wandb.define_metric("test_log_loss", summary="min")
wandb.define_metric("train_loss", summary="min")
wandb.define_metric("train_l2_loss", summary="min")
# define a metric we are interested in the maximum of
wandb.define_metric("test_auc", summary="max")
wandb.define_metric("train_moving_auc", summary="max")
wandb.log({'batch_size': batch_size,})
run_one_model(model=model, learning_rate=learning_rate, epsilon=1e-8,
decay_rate=None, ep=split_epoch, grda_c=None, grda_mu=None,
learning_rate2=None,decay_rate2=None, retrain_stage=False,
writer=writer, logger=logger
)
writer.close()
logger.info(model_string_name+f"-l2_loss_{l2 != 0} Done!")
wandb.finish()