forked from holmescao/iGrow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_simulator.py
144 lines (121 loc) · 5.29 KB
/
train_simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse
import os
import torch
from TenSim.utils.model import Net
from TenSim.utils.data_reader import TomatoDataset
from TenSim.utils.trainer import data_prepare, train_nn
number_of_hidden_dims1 = 300
number_of_hidden_dims2 = 300
number_of_hidden_dims3 = 600
BATCH_SIZE = 512
LEARNING_RATE = 1e-4
DAY_IN_LIFE_CYCLE = 160
EPOCHS = 1
def train_greenhouse(wur_tomato_reader, full_train_x, full_train_y, tmp_folder):
for g_path in [tmp_folder + '/model', tmp_folder + '/scaler', tmp_folder + '/log']:
if not os.path.exists(g_path):
os.makedirs(g_path)
x_scaler_path = tmp_folder + '/scaler/greenhouse_x_scaler.pkl'
y_scaler_path = tmp_folder + '/scaler/greenhouse_y_scaler.pkl'
save_model = tmp_folder + '/model/simulator_greenhouse.pkl'
train_log = tmp_folder + '/log/trainlog_greenhouse.log'
net = Net(input_dim=13, output_dim=3, hidden_dim=number_of_hidden_dims1)
train_x, train_y = wur_tomato_reader.greenhouse_x_y(
full_train_x, full_train_y)
dealDataset, train_loader, val_loader, test_loader = data_prepare(
train_x, train_y,
x_scaler_path=x_scaler_path,
y_scaler_path=y_scaler_path,
batch_size=BATCH_SIZE,
train_shuffle=True,
test_shuffle=False)
train_nn(net=net,
train_loader=train_loader,
val_loader=val_loader,
lr=LEARNING_RATE,
Epoch=EPOCHS,
save_model=save_model,
train_log=train_log)
def train_crop_front(wur_tomato_reader, full_train_x, full_train_y, tmp_folder):
for g_path in [tmp_folder + '/model', tmp_folder + '/scaler', tmp_folder + '/log']:
if not os.path.exists(g_path):
os.makedirs(g_path)
x_scaler_path = tmp_folder + '/scaler/crop_front_x_scaler.pkl'
y_scaler_path = tmp_folder + '/scaler/crop_front_y_scaler.pkl'
save_model = tmp_folder + '/model/simulator_crop_front.pkl'
train_log = tmp_folder + '/log/trainlog_crop_front.log'
net = Net(input_dim=7, output_dim=3, hidden_dim=number_of_hidden_dims2)
train_x, train_y = wur_tomato_reader.crop_front_x_y(
full_train_x, full_train_y)
dealDataset, train_loader, val_loader, test_loader = data_prepare(
train_x, train_y,
x_scaler_path=x_scaler_path,
y_scaler_path=y_scaler_path,
batch_size=BATCH_SIZE,
train_shuffle=True,
test_shuffle=False)
train_nn(net=net,
train_loader=train_loader,
val_loader=val_loader,
lr=LEARNING_RATE,
Epoch=EPOCHS,
save_model=save_model,
train_log=train_log)
def train_crop_back(wur_tomato_reader, full_train_x, full_train_y, tmp_folder):
for g_path in [tmp_folder + '/model', tmp_folder + '/scaler', tmp_folder + '/log']:
if not os.path.exists(g_path):
os.makedirs(g_path)
x_scaler_path = tmp_folder + '/scaler/crop_back_x_scaler.pkl'
y_scaler_path = tmp_folder + '/scaler/crop_back_y_scaler.pkl'
save_model = tmp_folder + '/model/simulator_crop_back.pkl'
train_log = tmp_folder + '/log/trainlog_crop_back.log'
net = Net(input_dim=4, output_dim=1, hidden_dim=number_of_hidden_dims3)
train_x, train_y = wur_tomato_reader.crop_back_x_y(
full_train_x, full_train_y)
dealDataset, train_loader, val_loader, test_loader = data_prepare(
train_x, train_y,
x_scaler_path=x_scaler_path,
y_scaler_path=y_scaler_path,
batch_size=BATCH_SIZE,
train_shuffle=True,
test_shuffle=False)
train_nn(net=net,
train_loader=train_loader,
val_loader=val_loader,
lr=LEARNING_RATE,
Epoch=EPOCHS,
save_model=save_model,
train_log=train_log)
def train_model(args):
traj_train_files = os.path.join(
args.base_input_path, args.traj_train_files)
tmp_folder = os.path.join(args.model_dir, args.version)
if not os.path.exists(tmp_folder):
os.makedirs(tmp_folder)
wur_tomato_reader = TomatoDataset(
train_file=traj_train_files, tmp_folder=tmp_folder)
train_data = wur_tomato_reader.read_data(traj_train_files)
full_train_x, full_train_y = wur_tomato_reader.data_process(train_data)
print("train simulator:")
print('start greenhouse model training')
train_greenhouse(wur_tomato_reader, full_train_x, full_train_y, tmp_folder)
print('end greenhouse model training')
print('--------------------------------')
print('start front crop model training')
train_crop_front(wur_tomato_reader, full_train_x, full_train_y, tmp_folder)
print('end front crop model training')
print('--------------------------------')
print('start back crop model training')
train_crop_back(wur_tomato_reader, full_train_x, full_train_y, tmp_folder)
print('end back crop model training')
print('--------------------------------')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--base_input_path", default="./input", type=str)
parser.add_argument(
"--model_dir", default="./result/models_new/", type=str)
parser.add_argument("--traj_train_files",
default="test-sim.txt", type=str)
parser.add_argument("--version", default="baseline", type=str)
args = parser.parse_args()
train_model(args)