forked from AberHu/Knowledge-Distillation-Zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_kd.py
556 lines (480 loc) · 20.6 KB
/
train_kd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import os
import sys
import time
import logging
import argparse
import numpy as np
from itertools import chain
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import torchvision.datasets as dst
from utils import AverageMeter, accuracy, transform_time
from utils import load_pretrained_model, save_checkpoint
from utils import create_exp_dir, count_parameters_in_MB
from network import define_tsnet
from kd_losses import *
parser = argparse.ArgumentParser(description='train kd')
# various path
parser.add_argument('--save_root', type=str, default='./results', help='models and logs are saved here')
parser.add_argument('--img_root', type=str, default='./datasets', help='path name of image dataset')
parser.add_argument('--s_init', type=str, required=True, help='initial parameters of student model')
parser.add_argument('--t_model', type=str, required=True, help='path name of teacher model')
# training hyper parameters
parser.add_argument('--print_freq', type=int, default=50, help='frequency of showing training results on console')
parser.add_argument('--epochs', type=int, default=200, help='number of total epochs to run')
parser.add_argument('--batch_size', type=int, default=128, help='The size of batch')
parser.add_argument('--lr', type=float, default=0.1, help='initial learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay')
parser.add_argument('--num_class', type=int, default=10, help='number of classes')
parser.add_argument('--cuda', type=int, default=1)
# others
parser.add_argument('--seed', type=int, default=2, help='random seed')
parser.add_argument('--note', type=str, default='try', help='note for this run')
# net and dataset choosen
parser.add_argument('--data_name', type=str, required=True, help='name of dataset') # cifar10/cifar100
parser.add_argument('--t_name', type=str, required=True, help='name of teacher') # resnet20/resnet110
parser.add_argument('--s_name', type=str, required=True, help='name of student') # resnet20/resnet110
# hyperparameter
parser.add_argument('--kd_mode', type=str, required=True, help='mode of kd, which can be:'
'logits/st/at/fitnet/nst/pkt/fsp/rkd/ab/'
'sp/sobolev/cc/lwm/irg/vid/ofd/afd')
parser.add_argument('--lambda_kd', type=float, default=1.0, help='trade-off parameter for kd loss')
parser.add_argument('--T', type=float, default=4.0, help='temperature for ST')
parser.add_argument('--p', type=float, default=2.0, help='power for AT')
parser.add_argument('--w_dist', type=float, default=25.0, help='weight for RKD distance')
parser.add_argument('--w_angle', type=float, default=50.0, help='weight for RKD angle')
parser.add_argument('--m', type=float, default=2.0, help='margin for AB')
parser.add_argument('--gamma', type=float, default=0.4, help='gamma in Gaussian RBF for CC')
parser.add_argument('--P_order', type=int, default=2, help='P-order Taylor series of Gaussian RBF for CC')
parser.add_argument('--w_irg_vert', type=float, default=0.1, help='weight for IRG vertex')
parser.add_argument('--w_irg_edge', type=float, default=5.0, help='weight for IRG edge')
parser.add_argument('--w_irg_tran', type=float, default=5.0, help='weight for IRG transformation')
parser.add_argument('--sf', type=float, default=1.0, help='scale factor for VID, i.e. mid_channels = sf * out_channels')
parser.add_argument('--init_var', type=float, default=5.0, help='initial variance for VID')
parser.add_argument('--att_f', type=float, default=1.0, help='attention factor of mid_channels for AFD')
args, unparsed = parser.parse_known_args()
args.save_root = os.path.join(args.save_root, args.note)
create_exp_dir(args.save_root)
log_format = '%(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format)
fh = logging.FileHandler(os.path.join(args.save_root, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
def main():
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
cudnn.enabled = True
cudnn.benchmark = True
logging.info("args = %s", args)
logging.info("unparsed_args = %s", unparsed)
logging.info('----------- Network Initialization --------------')
snet = define_tsnet(name=args.s_name, num_class=args.num_class, cuda=args.cuda)
checkpoint = torch.load(args.s_init)
load_pretrained_model(snet, checkpoint['net'])
logging.info('Student: %s', snet)
logging.info('Student param size = %fMB', count_parameters_in_MB(snet))
tnet = define_tsnet(name=args.t_name, num_class=args.num_class, cuda=args.cuda)
checkpoint = torch.load(args.t_model)
load_pretrained_model(tnet, checkpoint['net'])
tnet.eval()
for param in tnet.parameters():
param.requires_grad = False
logging.info('Teacher: %s', tnet)
logging.info('Teacher param size = %fMB', count_parameters_in_MB(tnet))
logging.info('-----------------------------------------------')
# define loss functions
if args.kd_mode == 'logits':
criterionKD = Logits()
elif args.kd_mode == 'st':
criterionKD = SoftTarget(args.T)
elif args.kd_mode == 'at':
criterionKD = AT(args.p)
elif args.kd_mode == 'fitnet':
criterionKD = Hint()
elif args.kd_mode == 'nst':
criterionKD = NST()
elif args.kd_mode == 'pkt':
criterionKD = PKTCosSim()
elif args.kd_mode == 'fsp':
criterionKD = FSP()
elif args.kd_mode == 'rkd':
criterionKD = RKD(args.w_dist, args.w_angle)
elif args.kd_mode == 'ab':
criterionKD = AB(args.m)
elif args.kd_mode == 'sp':
criterionKD = SP()
elif args.kd_mode == 'sobolev':
criterionKD = Sobolev()
elif args.kd_mode == 'cc':
criterionKD = CC(args.gamma, args.P_order)
elif args.kd_mode == 'lwm':
criterionKD = LwM()
elif args.kd_mode == 'irg':
criterionKD = IRG(args.w_irg_vert, args.w_irg_edge, args.w_irg_tran)
elif args.kd_mode == 'vid':
s_channels = snet.module.get_channel_num()[1:4]
t_channels = tnet.module.get_channel_num()[1:4]
criterionKD = []
for s_c, t_c in zip(s_channels, t_channels):
criterionKD.append(VID(s_c, int(args.sf*t_c), t_c, args.init_var))
criterionKD = [c.cuda() for c in criterionKD] if args.cuda else criterionKD
criterionKD = [None] + criterionKD # None is a placeholder
elif args.kd_mode == 'ofd':
s_channels = snet.module.get_channel_num()[1:4]
t_channels = tnet.module.get_channel_num()[1:4]
criterionKD = []
for s_c, t_c in zip(s_channels, t_channels):
criterionKD.append(OFD(s_c, t_c).cuda() if args.cuda else OFD(s_c, t_c))
criterionKD = [None] + criterionKD # None is a placeholder
elif args.kd_mode == 'afd':
# t_channels is same with s_channels
s_channels = snet.module.get_channel_num()[1:4]
t_channels = tnet.module.get_channel_num()[1:4]
criterionKD = []
for t_c in t_channels:
criterionKD.append(AFD(t_c, args.att_f).cuda() if args.cuda else AFD(t_c, args.att_f))
criterionKD = [None] + criterionKD # None is a placeholder
# # t_chws is same with s_chws
# s_chws = snet.module.get_chw_num()[1:4]
# t_chws = tnet.module.get_chw_num()[1:4]
# criterionKD = []
# for t_chw in t_chws:
# criterionKD.append(AFD(t_chw).cuda() if args.cuda else AFD(t_chw))
# criterionKD = [None] + criterionKD # None is a placeholder
else:
raise Exception('Invalid kd mode...')
if args.cuda:
criterionCls = torch.nn.CrossEntropyLoss().cuda()
else:
criterionCls = torch.nn.CrossEntropyLoss()
# initialize optimizer
if args.kd_mode in ['vid', 'ofd', 'afd']:
optimizer = torch.optim.SGD(chain(snet.parameters(),
*[c.parameters() for c in criterionKD[1:]]),
lr = args.lr,
momentum = args.momentum,
weight_decay = args.weight_decay,
nesterov = True)
else:
optimizer = torch.optim.SGD(snet.parameters(),
lr = args.lr,
momentum = args.momentum,
weight_decay = args.weight_decay,
nesterov = True)
# define transforms
if args.data_name == 'cifar10':
dataset = dst.CIFAR10
mean = (0.4914, 0.4822, 0.4465)
std = (0.2470, 0.2435, 0.2616)
elif args.data_name == 'cifar100':
dataset = dst.CIFAR100
mean = (0.5071, 0.4865, 0.4409)
std = (0.2673, 0.2564, 0.2762)
else:
raise Exception('Invalid dataset name...')
train_transform = transforms.Compose([
transforms.Pad(4, padding_mode='reflect'),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=mean,std=std)
])
test_transform = transforms.Compose([
transforms.CenterCrop(32),
transforms.ToTensor(),
transforms.Normalize(mean=mean,std=std)
])
# define data loader
train_loader = torch.utils.data.DataLoader(
dataset(root = args.img_root,
transform = train_transform,
train = True,
download = True),
batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True)
test_loader = torch.utils.data.DataLoader(
dataset(root = args.img_root,
transform = test_transform,
train = False,
download = True),
batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True)
# warp nets and criterions for train and test
nets = {'snet':snet, 'tnet':tnet}
criterions = {'criterionCls':criterionCls, 'criterionKD':criterionKD}
# first initilizing the student nets
if args.kd_mode in ['fsp', 'ab']:
logging.info('The first stage, student initialization......')
train_init(train_loader, nets, optimizer, criterions, 50)
args.lambda_kd = 0.0
logging.info('The second stage, softmax training......')
best_top1 = 0
best_top5 = 0
for epoch in range(1, args.epochs+1):
adjust_lr(optimizer, epoch)
# train one epoch
epoch_start_time = time.time()
train(train_loader, nets, optimizer, criterions, epoch)
# evaluate on testing set
logging.info('Testing the models......')
test_top1, test_top5 = test(test_loader, nets, criterions, epoch)
epoch_duration = time.time() - epoch_start_time
logging.info('Epoch time: {}s'.format(int(epoch_duration)))
# save model
is_best = False
if test_top1 > best_top1:
best_top1 = test_top1
best_top5 = test_top5
is_best = True
logging.info('Saving models......')
save_checkpoint({
'epoch': epoch,
'snet': snet.state_dict(),
'tnet': tnet.state_dict(),
'prec@1': test_top1,
'prec@5': test_top5,
}, is_best, args.save_root)
def train_init(train_loader, nets, optimizer, criterions, total_epoch):
snet = nets['snet']
tnet = nets['tnet']
criterionCls = criterions['criterionCls']
criterionKD = criterions['criterionKD']
snet.train()
for epoch in range(1, total_epoch+1):
adjust_lr_init(optimizer, epoch)
batch_time = AverageMeter()
data_time = AverageMeter()
cls_losses = AverageMeter()
kd_losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
epoch_start_time = time.time()
end = time.time()
for i, (img, target) in enumerate(train_loader, start=1):
data_time.update(time.time() - end)
if args.cuda:
img = img.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
stem_s, rb1_s, rb2_s, rb3_s, feat_s, out_s = snet(img)
stem_t, rb1_t, rb2_t, rb3_t, feat_t, out_t = tnet(img)
cls_loss = criterionCls(out_s, target) * 0.0
if args.kd_mode in ['fsp']:
kd_loss = (criterionKD(stem_s[1], rb1_s[1], stem_t[1].detach(), rb1_t[1].detach()) +
criterionKD(rb1_s[1], rb2_s[1], rb1_t[1].detach(), rb2_t[1].detach()) +
criterionKD(rb2_s[1], rb3_s[1], rb2_t[1].detach(), rb3_t[1].detach())) / 3.0 * args.lambda_kd
elif args.kd_mode in ['ab']:
kd_loss = (criterionKD(rb1_s[0], rb1_t[0].detach()) +
criterionKD(rb2_s[0], rb2_t[0].detach()) +
criterionKD(rb3_s[0], rb3_t[0].detach())) / 3.0 * args.lambda_kd
else:
raise Exception('Invalid kd mode...')
loss = cls_loss + kd_loss
prec1, prec5 = accuracy(out_s, target, topk=(1,5))
cls_losses.update(cls_loss.item(), img.size(0))
kd_losses.update(kd_loss.item(), img.size(0))
top1.update(prec1.item(), img.size(0))
top5.update(prec5.item(), img.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
log_str = ('Epoch[{0}]:[{1:03}/{2:03}] '
'Time:{batch_time.val:.4f} '
'Data:{data_time.val:.4f} '
'Cls:{cls_losses.val:.4f}({cls_losses.avg:.4f}) '
'KD:{kd_losses.val:.4f}({kd_losses.avg:.4f}) '
'prec@1:{top1.val:.2f}({top1.avg:.2f}) '
'prec@5:{top5.val:.2f}({top5.avg:.2f})'.format(
epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time,
cls_losses=cls_losses, kd_losses=kd_losses, top1=top1, top5=top5))
logging.info(log_str)
epoch_duration = time.time() - epoch_start_time
logging.info('Epoch time: {}s'.format(int(epoch_duration)))
def train(train_loader, nets, optimizer, criterions, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
cls_losses = AverageMeter()
kd_losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
snet = nets['snet']
tnet = nets['tnet']
criterionCls = criterions['criterionCls']
criterionKD = criterions['criterionKD']
snet.train()
if args.kd_mode in ['vid', 'ofd']:
for i in range(1,4):
criterionKD[i].train()
end = time.time()
for i, (img, target) in enumerate(train_loader, start=1):
data_time.update(time.time() - end)
if args.cuda:
img = img.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
if args.kd_mode in ['sobolev', 'lwm']:
img.requires_grad = True
stem_s, rb1_s, rb2_s, rb3_s, feat_s, out_s = snet(img)
stem_t, rb1_t, rb2_t, rb3_t, feat_t, out_t = tnet(img)
cls_loss = criterionCls(out_s, target)
if args.kd_mode in ['logits', 'st']:
kd_loss = criterionKD(out_s, out_t.detach()) * args.lambda_kd
elif args.kd_mode in ['fitnet', 'nst']:
kd_loss = criterionKD(rb3_s[1], rb3_t[1].detach()) * args.lambda_kd
elif args.kd_mode in ['at', 'sp']:
kd_loss = (criterionKD(rb1_s[1], rb1_t[1].detach()) +
criterionKD(rb2_s[1], rb2_t[1].detach()) +
criterionKD(rb3_s[1], rb3_t[1].detach())) / 3.0 * args.lambda_kd
elif args.kd_mode in ['pkt', 'rkd', 'cc']:
kd_loss = criterionKD(feat_s, feat_t.detach()) * args.lambda_kd
elif args.kd_mode in ['fsp']:
kd_loss = (criterionKD(stem_s[1], rb1_s[1], stem_t[1].detach(), rb1_t[1].detach()) +
criterionKD(rb1_s[1], rb2_s[1], rb1_t[1].detach(), rb2_t[1].detach()) +
criterionKD(rb2_s[1], rb3_s[1], rb2_t[1].detach(), rb3_t[1].detach())) / 3.0 * args.lambda_kd
elif args.kd_mode in ['ab']:
kd_loss = (criterionKD(rb1_s[0], rb1_t[0].detach()) +
criterionKD(rb2_s[0], rb2_t[0].detach()) +
criterionKD(rb3_s[0], rb3_t[0].detach())) / 3.0 * args.lambda_kd
elif args.kd_mode in ['sobolev']:
kd_loss = criterionKD(out_s, out_t, img, target) * args.lambda_kd
elif args.kd_mode in ['lwm']:
kd_loss = criterionKD(out_s, rb2_s[1], out_t, rb2_t[1], target) * args.lambda_kd
elif args.kd_mode in ['irg']:
kd_loss = criterionKD([rb2_s[1], rb3_s[1], feat_s, out_s],
[rb2_t[1].detach(),
rb3_t[1].detach(),
feat_t.detach(),
out_t.detach()]) * args.lambda_kd
elif args.kd_mode in ['vid', 'afd']:
kd_loss = (criterionKD[1](rb1_s[1], rb1_t[1].detach()) +
criterionKD[2](rb2_s[1], rb2_t[1].detach()) +
criterionKD[3](rb3_s[1], rb3_t[1].detach())) / 3.0 * args.lambda_kd
elif args.kd_mode in ['ofd']:
kd_loss = (criterionKD[1](rb1_s[0], rb1_t[0].detach()) +
criterionKD[2](rb2_s[0], rb2_t[0].detach()) +
criterionKD[3](rb3_s[0], rb3_t[0].detach())) / 3.0 * args.lambda_kd
else:
raise Exception('Invalid kd mode...')
loss = cls_loss + kd_loss
prec1, prec5 = accuracy(out_s, target, topk=(1,5))
cls_losses.update(cls_loss.item(), img.size(0))
kd_losses.update(kd_loss.item(), img.size(0))
top1.update(prec1.item(), img.size(0))
top5.update(prec5.item(), img.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
log_str = ('Epoch[{0}]:[{1:03}/{2:03}] '
'Time:{batch_time.val:.4f} '
'Data:{data_time.val:.4f} '
'Cls:{cls_losses.val:.4f}({cls_losses.avg:.4f}) '
'KD:{kd_losses.val:.4f}({kd_losses.avg:.4f}) '
'prec@1:{top1.val:.2f}({top1.avg:.2f}) '
'prec@5:{top5.val:.2f}({top5.avg:.2f})'.format(
epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time,
cls_losses=cls_losses, kd_losses=kd_losses, top1=top1, top5=top5))
logging.info(log_str)
def test(test_loader, nets, criterions, epoch):
cls_losses = AverageMeter()
kd_losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
snet = nets['snet']
tnet = nets['tnet']
criterionCls = criterions['criterionCls']
criterionKD = criterions['criterionKD']
snet.eval()
if args.kd_mode in ['vid', 'ofd']:
for i in range(1,4):
criterionKD[i].eval()
end = time.time()
for i, (img, target) in enumerate(test_loader, start=1):
if args.cuda:
img = img.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
if args.kd_mode in ['sobolev', 'lwm']:
img.requires_grad = True
stem_s, rb1_s, rb2_s, rb3_s, feat_s, out_s = snet(img)
stem_t, rb1_t, rb2_t, rb3_t, feat_t, out_t = tnet(img)
else:
with torch.no_grad():
stem_s, rb1_s, rb2_s, rb3_s, feat_s, out_s = snet(img)
stem_t, rb1_t, rb2_t, rb3_t, feat_t, out_t = tnet(img)
cls_loss = criterionCls(out_s, target)
if args.kd_mode in ['logits', 'st']:
kd_loss = criterionKD(out_s, out_t.detach()) * args.lambda_kd
elif args.kd_mode in ['fitnet', 'nst']:
kd_loss = criterionKD(rb3_s[1], rb3_t[1].detach()) * args.lambda_kd
elif args.kd_mode in ['at', 'sp']:
kd_loss = (criterionKD(rb1_s[1], rb1_t[1].detach()) +
criterionKD(rb2_s[1], rb2_t[1].detach()) +
criterionKD(rb3_s[1], rb3_t[1].detach())) / 3.0 * args.lambda_kd
elif args.kd_mode in ['pkt', 'rkd', 'cc']:
kd_loss = criterionKD(feat_s, feat_t.detach()) * args.lambda_kd
elif args.kd_mode in ['fsp']:
kd_loss = (criterionKD(stem_s[1], rb1_s[1], stem_t[1].detach(), rb1_t[1].detach()) +
criterionKD(rb1_s[1], rb2_s[1], rb1_t[1].detach(), rb2_t[1].detach()) +
criterionKD(rb2_s[1], rb3_s[1], rb2_t[1].detach(), rb3_t[1].detach())) / 3.0 * args.lambda_kd
elif args.kd_mode in ['ab']:
kd_loss = (criterionKD(rb1_s[0], rb1_t[0].detach()) +
criterionKD(rb2_s[0], rb2_t[0].detach()) +
criterionKD(rb3_s[0], rb3_t[0].detach())) / 3.0 * args.lambda_kd
elif args.kd_mode in ['sobolev']:
kd_loss = criterionKD(out_s, out_t, img, target) * args.lambda_kd
elif args.kd_mode in ['lwm']:
kd_loss = criterionKD(out_s, rb2_s[1], out_t, rb2_t[1], target) * args.lambda_kd
elif args.kd_mode in ['irg']:
kd_loss = criterionKD([rb2_s[1], rb3_s[1], feat_s, out_s],
[rb2_t[1].detach(),
rb3_t[1].detach(),
feat_t.detach(),
out_t.detach()]) * args.lambda_kd
elif args.kd_mode in ['vid', 'afd']:
kd_loss = (criterionKD[1](rb1_s[1], rb1_t[1].detach()) +
criterionKD[2](rb2_s[1], rb2_t[1].detach()) +
criterionKD[3](rb3_s[1], rb3_t[1].detach())) / 3.0 * args.lambda_kd
elif args.kd_mode in ['ofd']:
kd_loss = (criterionKD[1](rb1_s[0], rb1_t[0].detach()) +
criterionKD[2](rb2_s[0], rb2_t[0].detach()) +
criterionKD[3](rb3_s[0], rb3_t[0].detach())) / 3.0 * args.lambda_kd
else:
raise Exception('Invalid kd mode...')
prec1, prec5 = accuracy(out_s, target, topk=(1,5))
cls_losses.update(cls_loss.item(), img.size(0))
kd_losses.update(kd_loss.item(), img.size(0))
top1.update(prec1.item(), img.size(0))
top5.update(prec5.item(), img.size(0))
f_l = [cls_losses.avg, kd_losses.avg, top1.avg, top5.avg]
logging.info('Cls: {:.4f}, KD: {:.4f}, Prec@1: {:.2f}, Prec@5: {:.2f}'.format(*f_l))
return top1.avg, top5.avg
def adjust_lr_init(optimizer, epoch):
scale = 0.1
lr_list = [args.lr*scale] * 30
lr_list += [args.lr*scale*scale] * 10
lr_list += [args.lr*scale*scale*scale] * 10
lr = lr_list[epoch-1]
logging.info('Epoch: {} lr: {:.4f}'.format(epoch, lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def adjust_lr(optimizer, epoch):
scale = 0.1
lr_list = [args.lr] * 100
lr_list += [args.lr*scale] * 50
lr_list += [args.lr*scale*scale] * 50
lr = lr_list[epoch-1]
logging.info('Epoch: {} lr: {:.3f}'.format(epoch, lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
main()