-
Notifications
You must be signed in to change notification settings - Fork 0
/
14965964854250.html
executable file
·568 lines (351 loc) · 21.5 KB
/
14965964854250.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
<!doctype html>
<html class="no-js" lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>
CS229 学习笔记 Part2 - 雪地
</title>
<link href="atom.xml" rel="alternate" title="雪地" type="application/atom+xml">
<link rel="stylesheet" href="asset/css/foundation.min.css" />
<link rel="stylesheet" href="asset/css/docs.css" />
<link rel="icon" href="asset/img/favicon.ico" />
<script src="asset/js/vendor/modernizr.js"></script>
<script src="asset/js/vendor/jquery.js"></script>
<script src="asset/highlightjs/highlight.pack.js"></script>
<link href="asset/highlightjs/styles/github.css" media="screen, projection" rel="stylesheet" type="text/css">
<script>hljs.initHighlightingOnLoad();</script>
<script type="text/javascript">
function before_search(){
var searchVal = 'site:yinzo.github.io ' + document.getElementById('search_input').value;
document.getElementById('search_q').value = searchVal;
return true;
}
</script>
</head>
<body class="antialiased hide-extras">
<div class="marketing off-canvas-wrap" data-offcanvas>
<div class="inner-wrap">
<nav class="top-bar docs-bar hide-for-small" data-topbar>
<section class="top-bar-section">
<div class="row">
<div style="position: relative;width:100%;"><div style="position: absolute; width:100%;">
<ul id="main-menu" class="left">
<li id="menu_item_index"><a href="index.html">Blog</a></li>
<li id="menu_item_archives"><a href="archives.html">Archives</a></li>
<li id="menu_item_about"><a href="http://yinz.xyz/">Home</a></li>
</ul>
<ul class="right" id="search-wrap">
<li>
<form target="_blank" onsubmit="return before_search();" action="http://google.com/search" method="get">
<input type="hidden" id="search_q" name="q" value="" />
<input tabindex="1" type="search" id="search_input" placeholder="Search"/>
</form>
</li>
</ul>
</div></div>
</div>
</section>
</nav>
<nav class="tab-bar show-for-small">
<a href="javascript:void(0)" class="left-off-canvas-toggle menu-icon">
<span> 雪地</span>
</a>
</nav>
<aside class="left-off-canvas-menu">
<ul class="off-canvas-list">
<li><a href="index.html">Blog</a></li>
<li><a href="archives.html">Archives</a></li>
<li><a href="http://yinz.xyz/">Home</a></li>
<li><label>Categories</label></li>
<li><a href="Security%20Info.html">Security Info</a></li>
<li><a href="Adversary%20Learning.html">Adversary Learning</a></li>
<li><a href="TCPIP.html">TCP/IP</a></li>
<li><a href="Pattern%20Recognition.html">Pattern Recognition</a></li>
<li><a href="Python.html">Python</a></li>
<li><a href="OS.html">OS</a></li>
<li><a href="Deep%20Learning.html">Deep Learning</a></li>
<li><a href="Machine%20Learning.html">Machine Learning</a></li>
</ul>
</aside>
<a class="exit-off-canvas" href="#"></a>
<section id="main-content" role="main" class="scroll-container">
<script type="text/javascript">
$(function(){
$('#menu_item_index').addClass('is_active');
});
</script>
<div class="row">
<div class="large-8 medium-8 columns">
<div class="markdown-body article-wrap">
<div class="article">
<h1>CS229 学习笔记 Part2</h1>
<div class="read-more clearfix">
<span class="date">2017/6/5 1:14 上午</span>
<span>posted in </span>
<span class="posted-in"><a href='Machine%20Learning.html'>Machine Learning</a></span>
<span class="comments">
</span>
</div>
</div><!-- article -->
<div class="article-content">
<ul>
<li>
<a href="#toc_0">判别式和生成式</a>
<ul>
<li>
<a href="#toc_1">判别式</a>
</li>
<li>
<a href="#toc_2">生成式</a>
</li>
</ul>
</li>
<li>
<a href="#toc_3">Gaussian discriminant analysis</a>
</li>
<li>
<a href="#toc_4">讨论:GDA 和 Logistic 回归</a>
</li>
<li>
<a href="#toc_5">朴素贝叶斯</a>
<ul>
<li>
<a href="#toc_6">拉普拉斯平滑</a>
</li>
<li>
<a href="#toc_7">用于文本分类的事件模型</a>
</li>
</ul>
</li>
</ul>
<h2 id="toc_0">判别式和生成式</h2>
<p>对于一个分类任务,判别式和生成式分别代表了两种不同的思路:</p>
<h3 id="toc_1">判别式</h3>
<p>通过直接从输入数据中学习,得到一个『特定输入对应的实际类别』的概率模型,模型的参数为 \(\theta\) 。即学习建模 \(p(y\mid x)\)</p>
<h3 id="toc_2">生成式</h3>
<p>通过对每一个类进行建模,然后就可以通过条件概率算出输入的数据更可能由哪一类生成。即学习建模 \(p(x\mid y)\) 和 \(p(y)\) ,然后计算 \[\arg\max\limits_y\frac{p(x \mid y)p(y)}{p(x)}\]</p>
<p>并且实际计算中,分母 \(p(x)\) 并不会影响各个类别概率的排序,所以最终简化成 \[\arg\max\limits_y p(x \mid y)p(y)\]</p>
<span id="more"></span><!-- more -->
<h2 id="toc_3">Gaussian discriminant analysis</h2>
<p>作为生成式模型的第一个例子,它假设数据的分布 \(p(x\mid y)\) 是多元高斯分布 (multivariate normal distribution),分类结果为二分类,即 \(y \sim \mathrm{Bernoulli}(\phi)\)。</p>
<p>根据生成式模型的思路,它通过训练数据,计算出两个类的隐含分布——多元高斯分布的参数 \(\mu_0, \mu_1,\Sigma\) (需要注意的是,这里对于两个多元正态分布的 \(\Sigma\),我们使用的是一个公共的参数,也就是我们假设两个分布的『形状』是一样的),以及对于分类结果的伯努利分布参数 \(\phi\)</p>
<p>根据定义,我们可以得到以下模型</p>
<p>\[p(y) = \phi^y(1-\phi)^{1-y}\]</p>
<p>\[p(x\mid y=0) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/ 2}} \exp\left(-\frac{1}{2}(x-\mu_0)^T\Sigma^{-1}(x-\mu_0)\right)\]</p>
<p>\[p(x\mid y=1) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/ 2}} \exp\left(-\frac{1}{2}(x-\mu_1)^T\Sigma^{-1}(x-\mu_1)\right)\]</p>
<p>接下来开始估计各个参数的值。我们使用一个新的似然函数 <strong>Joint likelihood</strong></p>
<p>\[\ell(\phi, \mu_0, \mu_1, \Sigma) = log \prod^m_{i=1} p(x^{(i)}, y^{(i)}; \phi, \mu_0, \mu_1, \Sigma)\]</p>
<p>\[\phantom{ \ell(\phi, \mu_0, \mu_1, \Sigma)} = log \prod^m_{i=1} p(x^{(i)}\mid y^{(i)}; \mu_0, \mu_1, \Sigma)p(y^{(i)};\phi)\]</p>
<p>通过最大化此似然函数,我们能够得到以上几个参数的估计值</p>
<p>\[\phi = \frac{1}{m}\sum^m_{i=1}1\{y^{(i)}=1\}\]</p>
<p>\[\mu_0 = \frac{\sum^m_{i=1}1\{y^{(i)} = 0\}x^{(i)}}{\sum^m_{i=1}1\{y^{(i)} = 0\}}\]</p>
<p>\[\mu_1 = \frac{\sum^m_{i=1}1\{y^{(i)} = 1\}x^{(i)}}{\sum^m_{i=1}1\{y^{(i)} = 1\}}\]</p>
<p>\[\Sigma = \frac{1}{m}\sum^m_{i=1}(x^{(i)}-\mu_{y^{(i)}})(x^{(i)}-\mu_{y^{(i)}})^T\]</p>
<p>而 GDA 的判别公式则是作为作业的一部分自行完成。</p>
<h2 id="toc_4">讨论:GDA 和 Logistic 回归</h2>
<p>GDA 的判别公式能够化为以下形式<br/>
\[p(y=1\mid x;\phi, \Sigma, \mu_0, \mu_1) = \frac{1}{1+\exp(-\theta^Tx)}\]</p>
<p>也就是 Logistic 回归的形式。(这个公式转化的具体过程是课后习题的一部分)<br/>
其中 \(\theta\) 是关于 \(\phi,\Sigma,\mu_0,\mu_1\) 的函数。那么 GDA 和 Logistic 回归(下称 LR)的区别在哪里呢?</p>
<p>假设 \(p(x\mid y)\) 满足多元高斯分布,那么 \(p(y\mid x)\) 能够写成 logistic 函数的形式。但是,反之并不成立。\(p(y\mid x)\) 能够写成 logistic 函数的形式并不意味着 \(p(x\mid y)\) 符合多元高斯分布。这说明,GDA 做出了一个更强的假设 (<em>stronger</em> modeling assumption)。</p>
<p>并且,当这个假设符合现实( \(p(x\mid y)\) 符合多元高斯分布 ),并且在训练集足够大的情况下,没有其他算法优于 GDA<sup id="fnref1"><a href="#fn1" rel="footnote">1</a></sup>。而且通常来说,对于一个较小的训练集,我们通常会觉得 GDA 会表现的更好。</p>
<p>反过来说,对于使用了较弱假设的 LR,它拥有更强的鲁棒性,对于错误的模型假设也更不敏感。对 \(p(x\mid y)\) 分布的假设,有很多种情况能够使得 \(p(y\mid x)\) 可以化为 Logistic 函数的形式。比如说,\(x \mid y = 0\) 和 \(x \mid y = 1\) 分别符合两个独立的泊松分布时既是如此。</p>
<h2 id="toc_5">朴素贝叶斯</h2>
<p>对于一个文本分类问题,使用50000个词的简化词袋模型时,我们的目标是对 \(p(x_1,\cdots,x_{50000}\mid y)\) 构建出最准确的模型。</p>
<p>\[p(x_1,\cdots,x_{50000}\mid y)\]</p>
<p>\[ = p(x_1\mid y)p(x_2\mid y,x_1)p(x_3\mid y,x_1,x_2)\cdots p(x_{50000}\mid y,x_1,x_2,\cdots,x_{49999})\]</p>
<p>此时的式子称为贝叶斯分类器。而朴素贝叶斯和贝叶斯的区别在于哪里呢?关键就在于以下假设:</p>
<p><strong>朴素贝叶斯假设:假设 \(x_i\) 条件独立于 \(y_i\)</strong></p>
<p>则原概率公式<br/>
\[ = p(x_1\mid y)p(x_2\mid y)p(x_3\mid y)\cdots p(x_{50000}\mid y)\]</p>
<p>此时的式子就称为<strong>朴素</strong>贝叶斯分类器了。虽然朴素贝叶斯假设是一个很强的假设 (strong assumption),但是它出人意料的在很多问题上都表现的不错。</p>
<p>使用朴素贝叶斯概率公式,则词袋中的每个词,对于每种文本分类都属于一个独立参数的伯努利分布。即此例子中,词袋大小50000,2种文本分类,于是共有 100,000 个伯努利分布参数需要估计,以及一个对于类别 y 的伯努利分布参数 \(\phi_y\)。</p>
<p>我们使用 Joint likelihood 作为目标函数</p>
<p>\[ \mathcal{L}(\phi_y, \phi_{j\mid y=0}, \phi_{j\mid y=1}) = \prod^m_{i=1}p(x^{(i)}, y^{(i)})\]</p>
<p>最大化似然函数得到各个参数的估计</p>
<p>\[j \in \{1,2,\cdots,50000\}\]</p>
<p>\[ \phi_{j\mid y=1} = \frac{\sum^m_{i=1}\operatorname{1}\{x_j^{(i)} = 1 \wedge y^{(i)} = 1 \}}{\sum^m_{i=1}\operatorname{1}\{ y^{(i)} = 1 \}} \]</p>
<p>\[\phi_{j\mid y=0} = \frac{\sum^m_{i=1}\operatorname{1}\{x_j^{(i)} = 1 \wedge y^{(i)} = 0 \}}{\sum^m_{i=1}\operatorname{1}\{ y^{(i)} = 0 \}}\]</p>
<p>\[\phi_y = \frac{\sum^m_{i=1}\operatorname{1}\{ y^{(i)} = 1 \}}{m}\]</p>
<p>朴素贝叶斯的判别公式如下:</p>
<p>\[p(y=1\mid x) = \frac{p(x\mid y =1)p(y=1)}{p(x)}\]</p>
<p>\[ = \frac{(\prod^n_{i=1}p(x_i|y=1))p(y=1)}{(\prod^n_{i=1}p(x_i|y=1))p(y=1)+(\prod^n_{i=1}p(x_i|y=0))p(y=0)}\]</p>
<p>最后,我们能够很容易的想到,可以将 \(x_i\) 的取值从二值变为多值,就成为了这个算法的泛化。为了做到这一点,我们只需要将对 \(p(x_i\mid y)\) 假设的伯努利分布,替换成多项式分布即可。如果原始属性是连续值,我们也可以通过分段的办法,将他离散化。之后,就可以仿照我们上述的过程来使用朴素贝叶斯算法了。当原始的连续属性使用多元正态分布不能很好的建模时,将他离散化后使用朴素贝叶斯通常能取得更好的效果。</p>
<h3 id="toc_6">拉普拉斯平滑</h3>
<p>上述标准的朴素贝叶斯通常情况下效果都很好,但是在一些特殊情况下会出现奇怪的情况。比如说,当你的分类器遇到了一个从来没有见过的词(不存在于训练数据中)的时候,对于这个词两个类别的概率都会等于零,并且由于累乘的结果,会使得整个输出都变为零。这显然不合理,所以这就是拉普拉斯平滑要解决的事情。</p>
<p>原理很简单,我们对于一个多项式分布输入的类别概率计算公式如下</p>
<p>\[p(z=j) = \phi_j = \frac{\sum^m_{i=1} \operatorname{1}\{z^{(i)}=j\}}{m}\]</p>
<p>我们想要让这个式子不等于零,很直觉的办法是在分子上加上一个很小的数。所以我们在分子上加一个 1。但是这还不够,我们需要让多项式分布的各个类整体概率和仍然为 1,即 \(\sum^k_{j=1}\phi_j = 1\),\(k\) 是多项式分布可选的类的数量。所以我们分母也需要稍作改动,最终我们得到</p>
<p>\[p(z=j) = \phi_j = \frac{\sum^m_{i=1} \operatorname{1}\{z^{(i)}=j\}+1}{m+k}\]</p>
<p>读者可以自己验算 \(\sum^k_{j=1}\phi_j = 1\)</p>
<h3 id="toc_7">用于文本分类的事件模型</h3>
<p>之前的模型我们称为『多变量伯努利分布事件模型』<sup id="fnref2"><a href="#fn2" rel="footnote">2</a></sup>,而对于文本分类的任务,接下来这个模型通常能够取得更好的效果,称为『多项式分布事件模型』<sup id="fnref3"><a href="#fn3" rel="footnote">3</a></sup>。</p>
<p>在这个模型中,一个由 n 个词组成的文本段将化为一个 n 维向量,每一维符合都一个相同的多项式分布,多项式分布一个选项对应一个特定的词。比如一个电子邮件内容为『快来 购买……』,在多项式分布中,快来对应的类别编号为33,购买的类别编号为580,则形成的输入向量就是 [33, 580, …]</p>
<p>文本段中每一个词的分布都来自同一个多项式分布,需要注意的是,词在文中的位置并不影响他的取值分布。</p>
<p>则似然函数定义如下</p>
<p>\[\mathcal{L}(\phi, \phi_{k\mid y=0}, \phi_{k\mid y=1}) = \prod^m_{i=1}p(x^{(i)},y^{(i)})\]</p>
<p>\[= \prod^m_{i=1}\left( \prod^{n_i}_{j=1}p(x_j^{(i)}\mid y;\phi_{k\mid y=0},\phi_{k\mid y=1}) \right)p(y^{(i)};\phi_y)\]</p>
<p>最大化似然函数得到参数估计</p>
<p>\[\phi_{k\mid y=1} = \frac{\sum^m_{i=1}\sum^{n_i}_{j=1} \operatorname{1}\{x_j^{(i)} = k\wedge y^{(i)} = 1 \} }{\sum^m_{i=1} \operatorname{1}\{ y^{(i)} = 1\} n_i}\]</p>
<p>\[\phi_{k\mid y=0} = \frac{\sum^m_{i=1}\sum^{n_i}_{j=1} \operatorname{1}\{x_j^{(i)} = k\wedge y^{(i)} = 0 \} }{\sum^m_{i=1} \operatorname{1}\{ y^{(i)} = 0\} n_i}\]</p>
<p>\[\phi_y = \frac{\sum^m_{i=1}\operatorname{1}\{y^{(i)} = 1\}}{m}\]</p>
<p>多项式分布事件模型和之前的模型的不同点在于,新模型除了统计某一个词是否出现,还考虑了某一个词出现的次数。</p>
<div class="footnotes">
<hr/>
<ol>
<li id="fn1">
<p>in the limit of vary large training sets (large m), there is no algorithm that is strictly better than GDA. <a href="#fnref1" rev="footnote">↩</a></p>
</li>
<li id="fn2">
<p>multi-variate Bernoulli event model <a href="#fnref2" rev="footnote">↩</a></p>
</li>
<li id="fn3">
<p>multinomial event model <a href="#fnref3" rev="footnote">↩</a></p>
</li>
</ol>
</div>
</div>
<div class="row">
<div class="large-6 columns">
<p class="text-left" style="padding:15px 0px;">
<a href="14968173531750.html"
title="Previous Post: CS229 学习笔记 Part3">« CS229 学习笔记 Part3</a>
</p>
</div>
<div class="large-6 columns">
<p class="text-right" style="padding:15px 0px;">
<a href="14946020792948.html"
title="Next Post: CS229 学习笔记 Part 1">CS229 学习笔记 Part 1 »</a>
</p>
</div>
</div>
<div class="comments-wrap">
<div class="share-comments">
<div id="disqus_thread"></div>
<script>
/**
* RECOMMENDED CONFIGURATION VARIABLES: EDIT AND UNCOMMENT THE SECTION BELOW TO INSERT DYNAMIC VALUES FROM YOUR PLATFORM OR CMS.
* LEARN WHY DEFINING THESE VARIABLES IS IMPORTANT: https://disqus.com/admin/universalcode/#configuration-variables
*/
/*
var disqus_config = function () {
this.page.url = PAGE_URL; // Replace PAGE_URL with your page's canonical URL variable
this.page.identifier = PAGE_IDENTIFIER; // Replace PAGE_IDENTIFIER with your page's unique identifier variable
};
*/
(function() { // DON'T EDIT BELOW THIS LINE
var d = document, s = d.createElement('script');
s.src = '//yinzo.disqus.com/embed.js';
s.setAttribute('data-timestamp', +new Date());
(d.head || d.body).appendChild(s);
})();
</script>
<noscript>Please enable JavaScript to view the <a href="https://disqus.com/?ref_noscript" rel="nofollow">comments powered by Disqus.</a></noscript>
</div>
</div>
</div><!-- article-wrap -->
</div><!-- large 8 -->
<div class="large-4 medium-4 columns">
<div class="hide-for-small">
<div id="sidebar" class="sidebar">
<div id="site-info" class="site-info">
<div class="site-a-logo"><img src="asset/img/3.png" /></div>
<h1>雪地</h1>
<div class="site-des"></div>
<div class="social">
<a class="github" target="_blank" href="https://github.com/Yinzo" title="GitHub">GitHub</a>
<a class="email" href="mailto:yinz995-1@yahoo.com" title="Email">Email</a>
<a class="rss" href="atom.xml" title="RSS">RSS</a>
</div>
</div>
<div id="site-categories" class="side-item ">
<div class="side-header">
<h2>Categories</h2>
</div>
<div class="side-content">
<p class="cat-list">
<a href="Security%20Info.html"><strong>Security Info</strong></a>
<a href="Adversary%20Learning.html"><strong>Adversary Learning</strong></a>
<a href="TCPIP.html"><strong>TCP/IP</strong></a>
<a href="Pattern%20Recognition.html"><strong>Pattern Recognition</strong></a>
<a href="Python.html"><strong>Python</strong></a>
<a href="OS.html"><strong>OS</strong></a>
<a href="Deep%20Learning.html"><strong>Deep Learning</strong></a>
<a href="Machine%20Learning.html"><strong>Machine Learning</strong></a>
</p>
</div>
</div>
<div id="site-categories" class="side-item">
<div class="side-header">
<h2>Recent Posts</h2>
</div>
<div class="side-content">
<ul class="posts-list">
<li class="post">
<a href="14968173531750.html">CS229 学习笔记 Part3</a>
</li>
<li class="post">
<a href="14965964854250.html">CS229 学习笔记 Part2</a>
</li>
<li class="post">
<a href="14946020792948.html">CS229 学习笔记 Part 1</a>
</li>
<li class="post">
<a href="14883590547961.html">原始模型优化笔记</a>
</li>
<li class="post">
<a href="14863637393852.html">低素质弹幕分类器的CNN实现</a>
</li>
</ul>
</div>
</div>
<div id="site-link" class="side-item">
<div class="side-header">
<h2>Link</h2>
</div>
<div class="side-content">
<p class="link-list">
<a href="http://blog.winkidney.com/">阿毛</a>
</p>
</div>
</div>
</div><!-- sidebar -->
</div><!-- hide for small -->
</div><!-- large 4 -->
</div><!-- row -->
<div class="page-bottom clearfix">
<div class="row">
<p class="copyright">Copyright © 2016
Powered by <a target="_blank" href="http://www.mweb.im">MWeb</a>,
Theme used <a target="_blank" href="http://github.com">GitHub CSS</a>.
Modified by <a target="_blank" href="http://yinz.xyz">Yinzo</a>.</p>
</div>
</div>
</section>
</div>
</div>
<script src="asset/js/foundation.min.js"></script>
<script>
$(document).foundation();
function fixSidebarHeight(){
var w1 = $('.markdown-body').height();
var w2 = $('#sidebar').height();
if (w1 > w2) { $('#sidebar').height(w1); };
}
$(function(){
fixSidebarHeight();
})
$(window).load(function(){
fixSidebarHeight();
});
</script>
<script src="asset/chart/all-min.js"></script><script type="text/javascript">$(function(){ var mwebii=0; var mwebChartEleId = 'mweb-chart-ele-'; $('pre>code').each(function(){ mwebii++; var eleiid = mwebChartEleId+mwebii; if($(this).hasClass('language-sequence')){ var ele = $(this).addClass('nohighlight').parent(); $('<div id="'+eleiid+'"></div>').insertAfter(ele); ele.hide(); var diagram = Diagram.parse($(this).text()); diagram.drawSVG(eleiid,{theme: 'simple'}); }else if($(this).hasClass('language-flow')){ var ele = $(this).addClass('nohighlight').parent(); $('<div id="'+eleiid+'"></div>').insertAfter(ele); ele.hide(); var diagram = flowchart.parse($(this).text()); diagram.drawSVG(eleiid); } });});</script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script type="text/x-mathjax-config">MathJax.Hub.Config({TeX: { equationNumbers: { autoNumber: "AMS" } }});</script>
<script src="asset/js/instantclick.min.js" data-no-instant></script>
<script data-no-instant>InstantClick.on('change', function() {
MathJax.Hub.Queue(["Typeset",MathJax.Hub]);
});</script>
<script data-no-instant>InstantClick.init();</script>
</body>
</html>