forked from ml-explore/mlx-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae.py
172 lines (134 loc) · 5.76 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright © 2023-2024 Apple Inc.
import math
import mlx.core as mx
import mlx.nn as nn
# from https://github.com/ml-explore/mlx-examples/blob/main/stable_diffusion/stable_diffusion/unet.py
def upsample_nearest(x, scale: int = 2):
B, H, W, C = x.shape
x = mx.broadcast_to(x[:, :, None, :, None, :], (B, H, scale, W, scale, C))
x = x.reshape(B, H * scale, W * scale, C)
return x
class UpsamplingConv2d(nn.Module):
"""
A convolutional layer that upsamples the input by a factor of 2. MLX does
not yet support transposed convolutions, so we approximate them with
nearest neighbor upsampling followed by a convolution. This is similar to
the approach used in the original U-Net.
"""
def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
super().__init__()
self.conv = nn.Conv2d(
in_channels, out_channels, kernel_size, stride=stride, padding=padding
)
def __call__(self, x):
x = self.conv(upsample_nearest(x))
return x
class Encoder(nn.Module):
"""
A convolutional variational encoder.
Maps the input to a normal distribution in latent space and sample a latent
vector from that distribution.
"""
def __init__(self, num_latent_dims, image_shape, max_num_filters):
super().__init__()
# number of filters in the convolutional layers
num_filters_1 = max_num_filters // 4
num_filters_2 = max_num_filters // 2
num_filters_3 = max_num_filters
# Output (BHWC): B x 32 x 32 x num_filters_1
self.conv1 = nn.Conv2d(image_shape[-1], num_filters_1, 3, stride=2, padding=1)
# Output (BHWC): B x 16 x 16 x num_filters_2
self.conv2 = nn.Conv2d(num_filters_1, num_filters_2, 3, stride=2, padding=1)
# Output (BHWC): B x 8 x 8 x num_filters_3
self.conv3 = nn.Conv2d(num_filters_2, num_filters_3, 3, stride=2, padding=1)
# Batch Normalization
self.bn1 = nn.BatchNorm(num_filters_1)
self.bn2 = nn.BatchNorm(num_filters_2)
self.bn3 = nn.BatchNorm(num_filters_3)
# Divide the spatial dimensions by 8 because of the 3 strided convolutions
output_shape = [num_filters_3] + [
dimension // 8 for dimension in image_shape[:-1]
]
flattened_dim = math.prod(output_shape)
# Linear mappings to mean and standard deviation
self.proj_mu = nn.Linear(flattened_dim, num_latent_dims)
self.proj_log_var = nn.Linear(flattened_dim, num_latent_dims)
def __call__(self, x):
x = nn.leaky_relu(self.bn1(self.conv1(x)))
x = nn.leaky_relu(self.bn2(self.conv2(x)))
x = nn.leaky_relu(self.bn3(self.conv3(x)))
x = mx.flatten(x, 1) # flatten all dimensions except batch
mu = self.proj_mu(x)
logvar = self.proj_log_var(x)
# Ensure this is the std deviation, not variance
sigma = mx.exp(logvar * 0.5)
# Generate a tensor of random values from a normal distribution
eps = mx.random.normal(sigma.shape)
# Reparametrization trick to brackpropagate through sampling.
z = eps * sigma + mu
return z, mu, logvar
class Decoder(nn.Module):
"""A convolutional decoder"""
def __init__(self, num_latent_dims, image_shape, max_num_filters):
super().__init__()
self.num_latent_dims = num_latent_dims
num_img_channels = image_shape[-1]
self.max_num_filters = max_num_filters
# decoder layers
num_filters_1 = max_num_filters
num_filters_2 = max_num_filters // 2
num_filters_3 = max_num_filters // 4
# divide the last two dimensions by 8 because of the 3 upsampling convolutions
self.input_shape = [dimension // 8 for dimension in image_shape[:-1]] + [
num_filters_1
]
flattened_dim = math.prod(self.input_shape)
# Output: flattened_dim
self.lin1 = nn.Linear(num_latent_dims, flattened_dim)
# Output (BHWC): B x 16 x 16 x num_filters_2
self.upconv1 = UpsamplingConv2d(
num_filters_1, num_filters_2, 3, stride=1, padding=1
)
# Output (BHWC): B x 32 x 32 x num_filters_1
self.upconv2 = UpsamplingConv2d(
num_filters_2, num_filters_3, 3, stride=1, padding=1
)
# Output (BHWC): B x 64 x 64 x #img_channels
self.upconv3 = UpsamplingConv2d(
num_filters_3, num_img_channels, 3, stride=1, padding=1
)
# Batch Normalizations
self.bn1 = nn.BatchNorm(num_filters_2)
self.bn2 = nn.BatchNorm(num_filters_3)
def __call__(self, z):
x = self.lin1(z)
# reshape to BHWC
x = x.reshape(
-1, self.input_shape[0], self.input_shape[1], self.max_num_filters
)
# approximate transposed convolutions with nearest neighbor upsampling
x = nn.leaky_relu(self.bn1(self.upconv1(x)))
x = nn.leaky_relu(self.bn2(self.upconv2(x)))
# sigmoid to ensure pixel values are in [0,1]
x = mx.sigmoid(self.upconv3(x))
return x
class CVAE(nn.Module):
"""
A convolutional variational autoencoder consisting of an encoder and a
decoder.
"""
def __init__(self, num_latent_dims, input_shape, max_num_filters):
super().__init__()
self.num_latent_dims = num_latent_dims
self.encoder = Encoder(num_latent_dims, input_shape, max_num_filters)
self.decoder = Decoder(num_latent_dims, input_shape, max_num_filters)
def __call__(self, x):
# image to latent vector
z, mu, logvar = self.encoder(x)
# latent vector to image
x = self.decode(z)
return x, mu, logvar
def encode(self, x):
return self.encoder(x)[0]
def decode(self, z):
return self.decoder(z)