-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_metrics.py
135 lines (113 loc) · 4.38 KB
/
test_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from __future__ import print_function
import argparse
import numpy as np
import torch
import cv2
import yaml
import os
from torchvision import models, transforms
from torch.autograd import Variable
import shutil
import glob
import tqdm
from util.metrics import PSNR
from albumentations import Compose, CenterCrop, PadIfNeeded
from PIL import Image
from ssim.ssimlib import SSIM
from models.networks import get_generator
from functools import partial
torch.cuda.set_device(0)
def get_args():
parser = argparse.ArgumentParser('Test an image')
parser.add_argument('--img_folder', required=True, help='GoPRO Folder')
parser.add_argument('--weights_path', required=True, help='Weights path')
parser.add_argument("--new_gopro", action= "store_true", help= "whether to use new go pro dir structure or old go pro dir structure, by default assumes old go pro dir structure, specifying this option will revert")
return parser.parse_args()
def prepare_dirs(path):
if os.path.exists(path):
shutil.rmtree(path)
os.makedirs(path)
def get_gt_image(path, new_gopro= False):
dir, filename = os.path.split(path)
base, seq = os.path.split(dir)
base, _ = os.path.split(base) if new_gopro else (base, None)
img = cv2.cvtColor(cv2.imread(os.path.join(base, 'sharp', seq, filename )if new_gopro else os.path.join(base, 'sharp', filename ) ), cv2.COLOR_BGR2RGB)
return img
def test_image(model, image_path, new_gopro= False):
img_transforms = transforms.Compose([
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
size_transform = Compose([
PadIfNeeded(736, 1280)
])
crop = CenterCrop(720, 1280)
img = cv2.imread(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_s = size_transform(image=img)['image']
img_tensor = torch.from_numpy(np.transpose(img_s / 255, (2, 0, 1)).astype('float32'))
img_tensor = img_transforms(img_tensor)
with torch.no_grad():
img_tensor = Variable(img_tensor.unsqueeze(0).cuda())
result_image = model(img_tensor)
result_image = result_image[0].cpu().float().numpy()
result_image = (np.transpose(result_image, (1, 2, 0)) + 1) / 2.0 * 255.0
result_image = crop(image=result_image)['image']
result_image = result_image.astype('uint8')
gt_image = get_gt_image(image_path, new_gopro)
_, filename = os.path.split(image_path)
psnr = PSNR(result_image, gt_image)
pilFake = Image.fromarray(result_image)
pilReal = Image.fromarray(gt_image)
ssim = SSIM(pilFake).cw_ssim_value(pilReal)
return psnr, ssim
def read_imgs(images):
images_= []
for img_ in images:
img = cv2.imread(img_)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_s = size_transform(image=img)['image']
img_tensor = torch.from_numpy(np.transpose(img_s / 255, (2, 0, 1)).astype('float32'))
img_tensor = img_transforms(img_tensor)
images_.append(img_tensor)
images_= np.array(images_)
images_= torch.from_numpy(images)
with torch.no_grad():
images_= Variable(images.cuda())
return images_
def test_image_batch(model, images, new_gopro= False):
img_transforms = transforms.Compose([
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
size_transform = Compose([
PadIfNeeded(736, 1280)
])
images_= read_imgs(images)
results_= model(images_)
results_= results_.cpu().float().numpy()
results_= (np.transpose(results_, (0, 2, 3, 1)) + 1) / 2.0 * 255.0
crop = CenterCrop(720, 1280)
results_= crop(image=results_)['image']
results_= results.astype('uint8')
get_gt_img= partial(get_gt_img, new_gopro=new_gopro)
get_gt_img_v= np.vectorize(get_gt_img)
gt_images= get_gt_img_v(results_)
def test(model, files, new_gopro= False):
psnr = 0
ssim = 0
for file in tqdm.tqdm(files):
cur_psnr, cur_ssim = test_image(model, file, new_gopro)
psnr += cur_psnr
ssim += cur_ssim
print("PSNR = {}".format(psnr / len(files)))
print("SSIM = {}".format(ssim / len(files)))
return psnr,ssim
if __name__ == '__main__':
args = get_args()
print(args)
with open('config/config.yaml') as cfg:
config = yaml.load(cfg)
model = get_generator(config['model'])
model.load_state_dict(torch.load(args.weights_path, map_location="cuda:0")['model'])
model = model.cuda()
filenames = sorted(glob.glob(args.img_folder + '/**/*.png' if os.path.isdir(args.img_folder) else args.img_folder, recursive=True)) if args.new_gopro else sorted(glob.glob(args.img_folder + '/**/blur/*.png' if os.path.isdir(args.img_folder) else args.img_folder, recursive=True))
_,__=test(model, filenames, args.new_gopro)