-
Notifications
You must be signed in to change notification settings - Fork 0
/
bert.py
321 lines (225 loc) · 11.6 KB
/
bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from tensorflow.keras.layers import Dense, LayerNormalization, Dropout, Layer, Embedding
from tensorflow.keras.models import Model
import numpy as np
import tensorflow as tf
from bert_train import token_index
def gelu(x):
"""Gaussian Error Linear Unit.
This is a smoother version of the RELU.
Original paper: https://arxiv.org/abs/1606.08415
Args:
x: float Tensor to perform activation.
Returns:
`x` with the GELU activation applied.
"""
cdf = 0.5 * (1.0 + tf.tanh(
(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
return x * cdf
def get_angles(pos, i, d_model):
angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
return pos * angle_rates
def positional_encoding(position, d_model):
angle_rads = get_angles(np.arange(position)[:, np.newaxis],
np.arange(d_model)[np.newaxis, :],
d_model)
# apply sin to even indices in the array; 2i
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
# apply cos to odd indices in the array; 2i+1
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
pos_encoding = angle_rads[np.newaxis, ...]
return tf.cast(pos_encoding, dtype=tf.float32)
def create_masks(inp):
# It is used to pad and mask future tokens in the input received by
# the decoder.
look_ahead_mask = create_look_ahead_mask(tf.shape(inp)[1])
enc_padding_mask = create_padding_mask(inp)
combined_mask = tf.maximum(enc_padding_mask, look_ahead_mask)
return combined_mask
def create_padding_mask(seq):
seq = tf.cast(tf.math.equal(seq, 0), tf.float32)
# add extra dimensions to add the padding
# to the attention logits.
return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len)
def create_look_ahead_mask(size):
mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
return mask # (seq_len, seq_len)
def scaled_dot_product_attention(q, k, v, mask):
"""Calculate the attention weights.
q, k, v must have matching leading dimensions.
k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v.
The mask has different shapes depending on its type(padding or look ahead)
but it must be broadcastable for addition.
Args:
q: query shape == (..., seq_len_q, depth)
k: key shape == (..., seq_len_k, depth)
v: value shape == (..., seq_len_v, depth_v)
mask: Float tensor with shape broadcastable
to (..., seq_len_q, seq_len_k). Defaults to None.
Returns:
output, attention_weights
"""
matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k)
# scale matmul_qk
dk = tf.cast(tf.shape(k)[-1], tf.float32)
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
# add the mask to the scaled tensor.
if mask is not None:
scaled_attention_logits += (mask * -1e9)
# softmax is normalized on the last axis (seq_len_k) so that the scores
# add up to 1.
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., seq_len_q, seq_len_k)
output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v)
return output, attention_weights
class MultiHeadAttention(Layer):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
assert d_model % self.num_heads == 0
self.depth = d_model // self.num_heads
self.wq = tf.keras.layers.Dense(d_model)
self.wk = tf.keras.layers.Dense(d_model)
self.wv = tf.keras.layers.Dense(d_model)
self.dense = tf.keras.layers.Dense(d_model)
def split_heads(self, x, batch_size):
"""Split the last dimension into (num_heads, depth).
Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
"""
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, v, k, q, mask):
batch_size = tf.shape(q)[0]
q = self.wq(q) # (batch_size, seq_len, d_model)
k = self.wk(k) # (batch_size, seq_len, d_model)
v = self.wv(v) # (batch_size, seq_len, d_model)
q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth)
k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth)
v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth)
# scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth)
# attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)
scaled_attention, attention_weights = scaled_dot_product_attention(
q, k, v, mask)
scaled_attention = tf.transpose(scaled_attention,
perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth)
concat_attention = tf.reshape(scaled_attention,
(batch_size, -1, self.d_model)) # (batch_size, seq_len_q, d_model)
output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model)
return output, attention_weights
class EncoderLayer(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, dff, rate=0.1):
super(EncoderLayer, self).__init__()
self.mha = MultiHeadAttention(d_model, num_heads)
self.ffn1 = Dense(d_model)
self.ffn_intermediate = Dense(dff, activation=gelu)
self.ffn2 = Dense(d_model)
self.layernorm1 = LayerNormalization(epsilon=1e-6)
self.layernorm2 = LayerNormalization(epsilon=1e-6)
self.dropout1 = Dropout(rate)
self.dropout2 = Dropout(rate)
def call(self, x, training, look_ahead_mask):
attn_output, _ = self.mha(x, x, x, look_ahead_mask) # (batch_size, input_seq_len, d_model)
attn_output = self.ffn1(attn_output)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(x + attn_output) # (batch_size, input_seq_len, d_model)
intermediate_output = self.ffn_intermediate(out1) # (batch_size, input_seq_len, d_model)
out2 = self.ffn2(intermediate_output)
out2 = self.dropout2(out2, training=training)
out2 = self.layernorm2(out2 + out1) # (batch_size, input_seq_len, d_model)
return out2
class Encoder(Layer):
def __init__(self, num_layers, d_model, num_heads, dff, target_vocab_size, maximum_position_encoding, rate=0.1):
super(Encoder, self).__init__()
self.d_model = d_model
self.num_layers = num_layers
self.embedding = Embedding(target_vocab_size, d_model)
self.pos_encoding = positional_encoding(maximum_position_encoding, self.d_model)
self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate)
for _ in range(num_layers)]
self.dropout = Dropout(rate)
def call(self, x, training, mask):
seq_len = tf.shape(x)[1]
x = self.embedding(x) # (batch_size, target_seq_len, d_model)
x += self.pos_encoding[:, :seq_len, :]
x = self.dropout(x, training=training)
for i in range(self.num_layers):
x = self.enc_layers[i](x, training, mask)
return x # (batch_size, input_seq_len, d_model)
class LanguageModel(Layer):
def __init__(self, d_model, vocab_size):
super(LanguageModel, self).__init__()
self.d_model = d_model
self.dense = Dense(d_model, activation=gelu)
self.layernorm = LayerNormalization(epsilon=1e-6)
self.output_bias = self.add_weight("output_bias", shape=vocab_size, initializer=tf.zeros_initializer())
def call(self, x, output_weights, training):
x = self.dense(x)
x = self.layernorm(x)
logit = tf.matmul(x, output_weights, transpose_b=True)
logit = tf.nn.bias_add(logit, self.output_bias)
return logit
def gather_indexes(self, x, positions):
"""Gathers the vectors at the specific positions over a minibatch."""
batch_size = tf.shape(x)[0]
seq_length = tf.shape(x)[1]
width = tf.shape(x)[2]
flat_offsets = tf.reshape(tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
flat_positions = tf.reshape(positions + flat_offsets, [-1])
flat_sequence_tensor = tf.reshape(x, [batch_size * seq_length, width])
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
return output_tensor
class BERT(Model):
def __init__(self, num_layers, d_model, num_heads, dff, vocab_size, pe_input, rate=0.1):
super(BERT, self).__init__()
self.encoder = Encoder(num_layers, d_model, num_heads, dff, vocab_size, pe_input, rate)
self.decoder = LanguageModel(d_model, vocab_size)
def call(self, inp, look_ahead_mask, training):
enc_output = self.encoder(inp, training, look_ahead_mask) # (batch_size, inp_seq_len, d_model)
# dec_output.shape == (batch_size, tar_seq_len, d_model)
output_weights = self.encoder.embedding.weights[0]
final_output = self.decoder(enc_output, output_weights, training)
return final_output
class BERTModel:
def __init__(self, num_classes, num_layers, d_model, dff, num_heads, dropout_rate):
self.encoder, self.decoder, self.model = None, None, None
self.generate_model(num_classes, num_layers, d_model, dff, num_heads, dropout_rate)
def generate_model(self, num_classes, num_layers, d_model, dff, num_heads, dropout_rate):
model = BERT(num_layers, d_model, num_heads, dff, vocab_size=num_classes, pe_input=10000, rate=dropout_rate)
temp_input = tf.random.uniform((64, 40), dtype=tf.int32, minval=0, maxval=70)
fn_out = model(temp_input, look_ahead_mask=None, training=False)
print("Transformer encoder input shape: (batch_size, enc_length) {}".format(temp_input.shape))
print("Transformer result shape: (batch_size, enc_length, target_vocab_size) {}".format(fn_out.shape))
self.encoder = model.encoder
self.decoder = model.decoder
self.model = model
def dataset(fname, batch_size, mode='train'):
with open(fname, mode='r', encoding='utf-8') as f:
lines = f.readlines()
lines = [x.strip() for x in lines if x is not '\n']
steps = int(np.ceil(len(lines) / batch_size))
def encode(input):
# Collect signals
input = input.numpy().decode('utf8')
sequence = np.array([token_index[SOS]] + [token_index[x] for x in input] + [token_index[EOS]]).astype('int32')
return sequence
def tf_encode(input):
result_sequence = tf.py_function(encode, [input], tf.int32)
result_sequence.set_shape([None])
return result_sequence[:-1], result_sequence[1:]
data = tf.data.Dataset.from_tensor_slices(lines)
data = data.map(tf_encode, num_parallel_calls=tf.data.experimental.AUTOTUNE)
if mode == 'train':
data = data.shuffle(10000).padded_batch(batch_size, padded_shapes=([None], [None]))
data = data.prefetch(tf.data.experimental.AUTOTUNE)
else:
data = data.padded_batch(batch_size, padded_shapes=([None], [None]))
return data, steps
class WarmUpSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(self, d_model, warmup_steps=1000000):
super(WarmUpSchedule, self).__init__()
self.d_model = d_model
self.d_model = tf.cast(self.d_model, tf.float32)
self.warmup_steps = warmup_steps
def __call__(self, step):
arg1 = tf.math.rsqrt(step)
arg2 = step * (self.warmup_steps ** -1.5)
return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)