-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpoint_circle_ddpg.py
219 lines (188 loc) · 10 KB
/
point_circle_ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import matplotlib
matplotlib.use('TkAgg')
import tensorflow as tf
import numpy as np
import time
import matplotlib.pyplot as plt
# from ENV_V0 import CartPoleEnv_adv as dreamer
import os
import gym
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
##################### hyper parameters ####################
MAX_EPISODES = 2000
MAX_EP_STEPS =5000
LR_A = 0.0001 # learning rate for actor
LR_C = 0.0002 # learning rate for critic
GAMMA = 0.99 # reward discount
TAU = 0.01 # soft replacement
MEMORY_CAPACITY = 50000
BATCH_SIZE = 256
labda=10.
RENDER = True
tol = 0.001
ENV_NAME = 'Ant-v2'
# env = dreamer()
env = gym.make(ENV_NAME)
env = env.unwrapped
EWMA_p=0.95
EWMA_step=np.zeros((1,MAX_EPISODES+1))
EWMA_reward=np.zeros((1,MAX_EPISODES+1))
EWMA_error=np.zeros((1,MAX_EPISODES+1))
iteration=np.zeros((1,MAX_EPISODES+1))
############################### DDPG ####################################
class DDPG(object):
def __init__(self, a_dim, s_dim, a_bound,):
self.memory = np.zeros((MEMORY_CAPACITY, s_dim * 2 + a_dim + 1), dtype=np.float32)
self.pointer = 0
self.sess = tf.Session()
self.a_dim, self.s_dim, self.a_bound = a_dim, s_dim, a_bound,
self.S = tf.placeholder(tf.float32, [None, s_dim], 's')
self.S_ = tf.placeholder(tf.float32, [None, s_dim], 's_')
self.R = tf.placeholder(tf.float32, [None, 1], 'r')
self.LR_A= tf.placeholder(tf.float32, None, 'LR_A')
self.LR_C = tf.placeholder(tf.float32, None, 'LR_C')
self.labda= tf.placeholder(tf.float32, None, 'Lambda')
self.a = self._build_a(self.S,)# 这个网络用于及时更新参数
self.q = self._build_c(self.S, self.a, )# 这个网络是用于及时更新参数
a_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Actor')
c_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Critic')
ema = tf.train.ExponentialMovingAverage(decay=1 - TAU) # soft replacement
def ema_getter(getter, name, *args, **kwargs):
return ema.average(getter(name, *args, **kwargs))
target_update = [ema.apply(a_params), ema.apply(c_params)] # soft update operation
# 这个网络不及时更新参数, 用于预测 Critic 的 Q_target 中的 action
a_ = self._build_a(self.S_, reuse=True, custom_getter=ema_getter) # replaced target parameters
a_cons = self._build_a(self.S_, reuse=True)
# 这个网络不及时更新参数, 用于给出 Actor 更新参数时的 Gradient ascent 强度
# q_ = self._build_c(self.S_, tf.stop_gradient(a_), reuse=True, custom_getter=ema_getter)
q_ = self._build_c(self.S_, tf.stop_gradient(a_), reuse=True, custom_getter=ema_getter)
self.q_cons = self._build_c(self.S_, a_cons, reuse=True)
self.q_lambda =tf.reduce_mean(self.q - self.q_cons)
# self.q_lambda = tf.reduce_mean(self.q_cons - self.q)
a_loss = - tf.reduce_mean(self.q)+ self.labda * self.q_lambda # maximize the q
self.atrain = tf.train.AdamOptimizer(self.LR_A).minimize(a_loss, var_list=a_params)#以learning_rate去训练,方向是minimize loss,调整列表参数,用adam
with tf.control_dependencies(target_update): # soft replacement happened at here
q_target = self.R + GAMMA * q_
self.td_error = tf.losses.mean_squared_error(labels=q_target, predictions=self.q)
self.ctrain = tf.train.AdamOptimizer(self.LR_C).minimize(self.td_error, var_list=c_params)
self.sess.run(tf.global_variables_initializer())
self.saver = tf.train.Saver()
# self.saver.restore(self.sess, "Save/cartpole_g10_M1_m0.1_l0.5_tau_0.02.ckpt") # 1 0.1 0.5 0.001
def choose_action(self, s):
return self.sess.run(self.a, {self.S: s[np.newaxis, :]})[0]
def learn(self,LR_A,LR_C,labda):
indices = np.random.choice(MEMORY_CAPACITY, size=BATCH_SIZE)
bt = self.memory[indices, :]
bs = bt[:, :self.s_dim]
ba = bt[:, self.s_dim: self.s_dim + self.a_dim]
br = bt[:, -self.s_dim - 1: -self.s_dim]
bs_ = bt[:, -self.s_dim:]
self.sess.run(self.atrain, {self.S: bs, self.S_: bs_, self.LR_A: LR_A,self.labda:labda})
self.sess.run(self.ctrain,{self.S: bs, self.a: ba, self.R: br, self.S_: bs_, self.LR_C: LR_C,self.labda:labda})
return self.sess.run(self.q_lambda,{self.S: bs, self.a: ba, self.R: br, self.S_: bs_}),self.sess.run(self.R, {self.R: br}),\
self.sess.run(self.td_error,
{self.S: bs, self.a: ba, self.R: br, self.S_: bs_})
def store_transition(self, s, a, r, s_):
transition = np.hstack((s, a, [r], s_))
index = self.pointer % MEMORY_CAPACITY # replace the old memory with new memory
self.memory[index, :] = transition
self.pointer += 1
#action 选择模块也是actor模块
def _build_a(self, s, reuse=None, custom_getter=None):
trainable = True
with tf.variable_scope('Actor', reuse=reuse, custom_getter=custom_getter):
net_0 = tf.layers.dense(s, 256, activation=tf.nn.relu, name='l1', trainable=trainable)#原始是30
net_1 = tf.layers.dense(net_0, 256, activation=tf.nn.relu, name='l2', trainable=trainable) # 原始是30
net_2 = tf.layers.dense(net_1, 256, activation=tf.nn.relu, name='l3', trainable=trainable) # 原始是30
net_3 = tf.layers.dense(net_2, 128, activation=tf.nn.relu, name='l4', trainable=trainable) # 原始是30
a = tf.layers.dense(net_3, self.a_dim, activation=tf.nn.tanh, name='a', trainable=trainable)
return tf.multiply(a, self.a_bound, name='scaled_a')
#critic模块
def _build_c(self, s, a, reuse=None, custom_getter=None):
trainable = True if reuse is None else False
with tf.variable_scope('Critic', reuse=reuse, custom_getter=custom_getter):
n_l1 = 256#30
w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], trainable=trainable)
w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], trainable=trainable)
b1 = tf.get_variable('b1', [1, n_l1], trainable=trainable)
net_0 = tf.nn.relu(tf.matmul(s, w1_s) + tf.matmul(a, w1_a) + b1)
net_1 = tf.layers.dense(net_0, 256, activation=tf.nn.relu, name='l2', trainable=trainable) # 原始是30
net_2 = tf.layers.dense(net_1, 128, activation=tf.nn.relu, name='l3', trainable=trainable) # 原始是30
return tf.layers.dense(net_2, 1, trainable=trainable) # Q(s,a)
def save_result(self):
# save_path = self.saver.save(self.sess, "Save/cartpole_g10_M1_m0.1_l0.5_tau_0.02.ckpt")
save_path = self.saver.save(self.sess, "Model/Ant_ddpg.ckpt")
# save_path = self.saver.save(self.sess, "Model/SRDDPG_INITIAL.ckpt")
print("Save to path: ", save_path)
############################### training ####################################
# env.seed(1) # 普通的 Policy gradient 方法, 使得回合的 variance 比较大, 所以我们选了一个好点的随机种子
s_dim = env.observation_space.shape[0]
a_dim = env.action_space.shape[0]
a_bound = env.action_space.high
ddpg = DDPG(a_dim, s_dim, a_bound)
ddpg.save_result()
var = 0.5*a_bound # control exploration
t1 = time.time()
max_reward=400
max_ewma_reward=200
C_Error=1000000
critic_error=1
for i in range(MAX_EPISODES):
iteration[0,i+1]=i+1
s = env.reset()
ep_reward = 0
ep_error = 0
# MAX_EP_STEPS = min(max(500,MAX_EPISODES),1000)
for j in range(MAX_EP_STEPS):
if RENDER:
env.render()
# Add exploration noise
a = ddpg.choose_action(s)
a = np.clip(np.random.normal(a, var), -a_bound, a_bound) # add randomness to action selection for exploration
#if var<0.01:
#a=np.clip(np.random.normal(a, a_bound), -a_bound, a_bound)
s_, r, done, _ = env.step(a)
ddpg.store_transition(s, a, r, s_)
if ddpg.pointer > MEMORY_CAPACITY:
var *= .999995 # decay the action randomness
#var = np.max([var,0.1])
# LR_A *= .99995
# LR_C *= .99995
l_q,l_r,critic_error=ddpg.learn(LR_A,LR_C,labda)
if l_q > tol:
if labda == 0:
labda = 1e-8
labda = min(labda * 2, 1e2)
if l_q < -tol:
labda = labda / 2
s = s_
ep_reward += r
ep_error +=critic_error
if j == MAX_EP_STEPS - 1:
EWMA_step[0,i+1]=EWMA_p*EWMA_step[0,i]+(1-EWMA_p)*j
EWMA_reward[0,i+1]=EWMA_p*EWMA_reward[0,i]+(1-EWMA_p)*ep_reward
EWMA_error[0, i + 1] = EWMA_p * EWMA_error[0, i] + (1 - EWMA_p) * ep_error
print('Episode:', i, ' Reward: %i' % int(ep_reward), "EWMA_reward = ",EWMA_reward[0,i+1],"Critic error",EWMA_error[0, i + 1] ,"LR_A = ",LR_A,'lambda',labda,'Running time: ', time.time() - t1)
if EWMA_reward[0,i+1]>max_ewma_reward:
max_ewma_reward=min(EWMA_reward[0,i+1]+1000,500000)
LR_A *= .8 # learning rate for actor
LR_C *= .8 # learning rate for critic
ddpg.save_result()
if ep_reward> max_reward:
max_reward = min(ep_reward+5000,500000)
LR_A *= .8 # learning rate for actor
LR_C *= .8 # learning rate for critic
ddpg.save_result()
print("max_reward : ",ep_reward)
else:
LR_A *= .99
LR_C *= .99
break
elif done:
EWMA_step[0,i+1]=EWMA_p*EWMA_step[0,i]+(1-EWMA_p)*j
EWMA_reward[0,i+1]=EWMA_p*EWMA_reward[0,i]+(1-EWMA_p)*ep_reward
EWMA_error[0, i + 1] = EWMA_p * EWMA_error[0, i] + (1 - EWMA_p) * ep_error
print('Episode:', i, ' Reward: %i' % int(ep_reward), "break in : ", j, "EWMA_reward = ", EWMA_reward[0, i + 1],"Critic error",EWMA_error[0, i + 1], "LR_A = ",LR_A,'lambda',labda,'Running time: ', time.time() - t1)
break
print('Running time: ', time.time() - t1)